导航:首页 > 电器电路 > 斩波电路模块

斩波电路模块

发布时间:2023-01-07 01:57:07

㈠ 基本斩波电路的类型及特点

种类
6种基本斩波电路:降压斩波电路、升压斩波电路、 升降压斩波电路、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路。 复合斩波电路——不同结构基本斩波电路组合。 多相多重斩波电路——相同结构基本斩波电路组合。编辑本段工作方式
斩波器的工作方式有两种: 一是脉宽调制方式,Ts(周期)不变,改变Ton(通用,Ton为开关每次接通的时间)。 二是频率调制方式,Ton不变,改变Ts(易产生干扰)。编辑本段具体电路分类
1、Buck电路:降压斩波器,其输出平均电压Uo小于输入电压Ui,输出电压与输入电压极性相同。 2、Boost电路:升压斩波器,其输出平均电压Uo大于输入电压Ui,输出电压与输入电压极性相同 3、Buck-Boost电路:降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,输出电压与输入电压极性相反,电感传输。 4、Cuk电路:降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,输出电压与输入电压极性相反,电容传输。编辑本段作用
用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。编辑本段现状
当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm^3,效率为(80-90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200-300)kHz,功率密度已达到27W/cm^3,采用同步整流器(MOS-FET代替肖特基二极管),使电路整体效率提高到90%。

㈡ 如何使降压斩波电路的输出电压更平稳

一 概述1.1直流斩波电路的分类直流斩波电路的种类较多,根本斩波电路包括:降压斩波电路,升压斩波电路,升降压斩波电路。1.2直流斩波电路的运用领域直流斩波电源广泛运用于各种电子设备的直流电源〔开关电源〕,也可拖动直流电动机或带蓄电池的负载。具体运用如地铁机车。1.3直流斩波电路的开展前景随着电力电子技术的高速开展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。电子设备的小型化和低本钱化使电源向轻,薄小和高效率方向开展,开关电源因其体积小,重量轻和高效率的优点而在各种电子设备中得到广泛的应用。直流斩波电路作为开关电源中的一种,它的变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。直流斩波电路变换是将固定的直流电压变换成可变的直流电压,也称DC/DC变换。直流斩波电路是电力电子技术领域的一个热点,以其中的IGBT降压斩波电路为例,它由于易驱动,电压,电流容量大等优点,在电力电子技术应用领域中有广阔的开展前景,也是由于开关电源向低电压,大电流和高效率的开展趋势,也促进了IGBT斩波电路的开展。本此课程设计是以直流斩波电路中一种最根本,常见的直流降压斩波电路作为研究分析对象二 降压斩波电路的设计思路2.1 设计思路直流斩波电路总共分为三个局部电路摸块。分别为主电路模块,控制电路模块和驱动电路模块。主电路模块: 由全控型IGBT的开通与关断的时间占空比来决定输出电压u。的大小。控制电路模块:用SG3525来控制IGBT的开通与关断。驱动电路模块:用来驱动IGBT。2.2 原理框图根据降压斩波电路设计任务要求设计主电路、控制电路、驱动电路,设计出降压斩波电路的原理框图如下列图所示。IGBT构造图三 直流降压斩波电路的设计与仿真3.1 主电路模块的设计直流降压斩波电路由直流电源,全控型器件IGBT,电感线圈,续流二极管以及负载组成。具体电路图如下
主电路的原理图3.2 主电路的工作原理主电路有两种工作状态,即IGBT导通和截止状态a.V导通,此时电源经电感线圈向负载供电,同时,电感线圈贮存能量。等效电路图
Ud=u_{L}\begin{pmatrix}t\end{pmatrix}+u_{R}\begin{pmatrix}t\end{pmatrix}
Ud=u
L

(
t

)+u
R

(
t

)
b.V截止,此时,电源脱离电路,电感线圈向负载供电,释放贮存的能量。等效电路电容C:属于斩波电路本身,不属于负载。V导通时充电,V截止时放电,从而使负载两端电压保持平稳。3.3 主电路图的仿真主电路的仿真图其中直流电源的参数设置为100V,PWM周期设置为0.0001S。当PWM的占空比取的是a=50%,当一个周期T完毕后,负载电压的理论平均值
U_{0}=\frac{t_{on}}{t_{on}+t_{off}}U_{1}=\frac{t_{on}}{T}U_{1}=∂U_{1}=50V
U
0

=
t
on

+t
off


t
on



U
1

=
T
t
on



U
1

=∂U
1

=50V
,经过相关参数的调试,实际
U_{0}=49.79
U
0

=49.79
,此时设计的最正确参数为:L=400e-5 H,R=3.8欧,C=3e-5 F。输出负载电压波形图为:当PWM的占空比取的是a=25%,当一个周期T完毕后,负载电压的理论平均值
U_{0}=\frac{t_{on}}{t_{on}+t_{off}}U_{1}=\frac{t_{on}}{T}U_{1}=∂U_{1}=25V
U
0

=
t
on

+t
off


t
on



U
1

=
T
t
on



U
1

=∂U
1

=25V
,经过相关参数的调试,实际
U_{0}=24.12
U
0

=24.12
,此时设计的最正确参数为:L=500e-5 H,R=15欧,C=4e-5 F。输出负载端电压波形图为:当PWM的占空比取的是a=75%,当一个周期T完毕后,负载电压的理论平均值
U_{0}=\frac{t_{on}}{t_{on}+t_{off}}U_{1}=\frac{t_{on}}{T}U_{1}=∂U_{1}=75V
U
0

=
t
on

+t
off


t
on



U
1

=
T
t
on



U
1

=∂U
1

=75V
,经过相关参数的调试,实际
U_{0}=75.14
U
0

=75.14
,此时设计的最正确参数为:L=250e-5 H,R=8欧,C=2.8e-5 F。输出负载端电压波形图为:3.4 主电路设计图四 控制电路的设计4.1 方案的选择对于控制电路的设计其实可以有很多种方法,可以通过一些数字运算芯片如单片机、CPLD等等来输出PWM波,也可以通过特定的PWM发生芯片来控制。因为设计课题要求,所以选用一般的SG3525作为PWM发生芯片来进展连续控制。SG3525 其原理图如图4.13下:1.Inv.input(引脚1):误差放大器反向输入端。在闭环系统中,该引脚接反应信号。在开环系统中,该端与补偿信号输入端〔引脚9〕相连,可构成跟随器。2.Noninv.input(引脚2):误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信号。根据需要,在该端与补偿信号输入端〔引脚9〕之间接入不同类型的反应网络,可以构成比例、比例积分和积分等类型的调节器。
3.Sync(引脚3):振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。4.OSC.Output(引脚4):振荡器输出端。5.CT(引脚5):振荡器定时电容接入端。6.RT〔引脚6〕:振荡器定时电阻接入端。7.Discharge(引脚7):振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。8.Soft-Start(引脚8):软启动电容接入端。该端通常接一只5 的软启动电容。9.pensation(引脚9):PWM比拟器补偿信号输入端。在该端与引脚2之间接入不同类型的反应网络,可以构成比例、比例积分和积分等类型调节器。10.Shutdown(引脚10):外部关断信号输入端。该端接高电平时控制器输出被制止。该端可与保护电路相连,以实现故障保护。11.Output A〔引脚11〕:输出端A。引脚11和引脚14是两路互补输出端。12.Ground(引脚12):信号地。13.Vc(引脚13):输出级偏置电压接入端。14.Output B〔引脚14〕:输出端B。引脚14和引脚11是两路互补输出端。15.Vcc〔引脚15〕:偏置电源接入端。16.Vref(引脚16):基准电源输出端。该端可输出一温度稳定性极好的基准电压。其特点特点如下:〔1〕工作电压*围宽:8—35V。〔2〕5.1〔1 1.0%〕V微调基准电源。〔3〕振荡器工作频率*围宽:100Hz¬—400KHz.〔4〕具有振荡器外部同步功能。〔5〕死区时间可调。〔6〕内置软启动电路。〔7〕具有输入欠电压锁定功能。〔8〕具有PWM琐存功能,制止多脉冲。〔9〕逐个脉冲关断。〔10〕双路输出〔灌电流/拉电流〕: mA(峰值)。SG3525的工作原理SG3525 内置了5.1V精细基准电源,微调至 1.0%,在误差放大器共模输入电压*围内,无须外接分压电组。SG3525还增加了同步功能,可以工作在主从模式,也可以与外部系统时钟信号同步,为设计提供了极大的灵活性。在CT 5 引脚和Discharge 7 引脚之间参加一个电阻就可以实现对死区时间的调节功能。由于SG3525内部集成了软启动电路,因此只需要一个外接定时电容。
SG3525的软启动接入端〔引脚8〕上通常接一个5 的软启动电容。上电过程中,由于电容两端的电压不能突变,因此与软启动电容接入端相连的PWM比拟器反向输入端处于低电平,PWM比拟器输出高电平。此时,PWM琐存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。只有软启动电容充电至其上的电压使引脚8处于高电平时, SG3525才开场工作。由于实际中,基准电压通常是接在误差放大器的同相输入端上,而输出电压的采样电压则加在误差放大器的反相输入端上。当输出电压因输入电压的升高或负载的变化而升高时,误差放大器的输出将减小,这将导致PWM比拟器输出为正的时间变长,PWM琐存器输出高电平的时间也变长,因此输出晶体管的导通时间将最终变短,从而使输出电压回落到额定值,实现了稳态。反之亦然。外接关断信号对输出级和软启动电路都起作用。当 Shutdown〔引脚10〕上的信号为高电平时,PWM琐存器将立即动作,制止SG3525的输出,同时,软启动电容将开场放电。如果该高电平持续,软启动电容将充分放电,直到关断信号完毕,才重新进入软启动过程。注意,Shutdown引脚不能悬空,应通过接地电阻可靠接地,以防止外部干扰信号耦合而影响SG3525的正常工作。欠电压锁定功能同样作用于输出级和软启动电路。如果输入电压过低,在SG3525的输出被关断同时,软启动电容将开场放电。控制电路如下五 驱动电路模块的设计该局部主要完成以下几个功能:(1)提供适当的正向和反向输出电压,使IGBT可靠的开通和关断;(2)提供足够大的瞬态功率或瞬时电流,使IGBT能迅速建立栅控电场而导通;(3)尽可能小的输入输出延迟时间,以提高工作效率;(4) 足够高的输入输出电气隔离性能,使信号电路与栅极驱动电路绝缘;(5)具有灵敏的过流保护能力。针对以上几个要求,对驱动电路进展以下设计。针对驱动电路的隔离方式:
采用普通光电耦合式驱动电路,该电路双侧都有源。其提供的脉冲宽度不受限制,较易检测IGBT的电压和电流的状态,对外送出过流信号。另外它使用比拟方便,稳定性比拟好。经过上文的分析采用以下驱动电路:六 总结与体会本次电力电子设计为期两周,这两周的时间是充实的,有对我们学过的知识重新熟悉与积累,也有对一些新知识的了解与掌握。前两天上网查询资料,但是收获很小,由于电力电子技术是去年学的,相关方面的知识多少有些生疏。但是通过重新翻阅书籍,头脑中的概念慢慢变得清晰。书本上有我们本次课题的相关例题,所以我们花了大量的时间温习课本,收获很大,课程设计局部的仿真进展得很顺利。同时,在仿真的过程中也了解到,理论上可行的东西,实际上执行起来还是有困难的,开场按理论参数进展设置,得出的仿真结果与理论差距较大。但是通过我们一遍一遍的修改参数,最终得到了最正确仿真结果。在这个过程中,让我们重新温习使用MATLAB软件,同时这个过程也要足够的耐心和细心。之后我们又遇到了问题,由于本次课程设计需要采用SG3525芯片来产生PWM波信号,而我在MATLAB,proteus等办公软件里找不到。通过和教师的交流,这个问题得到了很好的解决。通过这次课程设计,提高了我对电力电子技术知识的掌握和相关的动手能力,更重要的是增强的自己的信心,坚决了自己信念,明确了以后的方向,收获了许多在教室在课堂很难体会到的东西,让我知道了的不只是这个简单的课题,它让我知道的是面对一个问题时应该从哪下手,怎样才能更好的解决问题。这对与我们使一次很好的锻炼,我坚信,这对于以后我们的工作与生活有很大的帮助。附录直流降压斩波总电路图

5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
降压斩波电路分析
一 概述
1.1直流斩波电路的分类
直流斩波电路的种类较多,根本斩波电路包括:降压斩波电路,升压斩波电路,升降压斩波电路。
1.2直流斩波电路的运用领域
直流斩波电源广泛运用于各种电子设备的直流电源〔开关电源〕,也可拖动直流电动机或带蓄电池的负载。具体运用如地铁机车。
1.3直流斩波电路的开展前景
第 1 页
随着电力电子技术的高速开展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。电子设备的小型化和低本钱化使电源向轻,薄小和高效率方向开展,开关电源因其体积小,重量轻和高效率的优点而在各种电子设备中得到广泛的应用。直流斩波电路作为开关电源中的一种,它的变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。直流斩波电路变换是将固定的直流电压变换成可变的直流电压,也称DC/DC变换。直流斩波电路是电力电子技术领域的一个热点,以其中的IGBT降压斩波电路为例,它由于易驱动,电压,电流容量大等优点,在电力电子技术应用领域中有广阔的开展前景,也是由于开关电源向低电压,大电流和高效率的开展趋势,也促进了IGBT斩波电路的开展。

㈢ 我想问问什么叫斩波电路啊

直流传动是斩波电路应用的传统领域,而开关电源则是斩波电路应用的新领域,前者的应用是逐渐萎缩,而后者的应用方兴未艾、欣欣向荣,是电力电子领域的一大热点。 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。直流变换电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其他领域的交直流电源。
斩波器的工作方式有:脉宽调制方式(Ts不变,改变ton)和频率调制方式(ton不变,改变Ts)两种。前者较为通用,后者容易产生干扰。当今世界软开关技术使得DC/DC变换器发生了质得变化和飞跃。美国VICOR公司设计制造得多种ECI软开关DC/DC变换器,最大输出功率有300W、600W、800W等,相应得功率密度为(6.2、10、17)W/cm3,效率为(80—90)%。日本NemicLambda公司最新推出得一种采用软开关技术得高频开关电源模块RM系列,其开关频率为200—300KHz,功率密度已达27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),使整个电路效率提高到90%。

㈣ 电力电子技术第6版有斩波电路么

电力电子技术第6版有斩波电路。
电力电子技术课程设计之降压斩波电路
一、概述从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。发热增多,体积缩小,难过高温关。因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。工程师们开始研究各种避开开关损耗的软开关技术。虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。有源箝位技术历经三代,且都申报了专利。第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到1MHZ,功率密度接近200W/in3,然而其转换效率却始终没有超过90%,主要原因在于MOSFET的损耗不仅有开关损耗,还有导通损耗和驱动损耗。特别是驱动损耗随工作频率的上升也大幅度增加,而且因1MHZ频率之下不易采用同步整流技术,其效率是无法再提高的。因此,其转换效率始终没有突破90%大关。为了降低第一代有源箝位技术的成本,IPD公司申报了第二代有源箝位技术专利。它采用P沟MOSFET在变压器二次侧用于forward电路拓朴的有源箝位。这使产品成本减低很多。但这种方法形成的MOSFET的零电压开关(ZVS)边界条件较窄,在全工作条件范围内效率的提升不如第一代有源箝位技术,而且PMOS工作频率也不理想。为了让磁能在磁芯复位时不白白消耗掉,一位美籍华人工程师于2001年申请了第三代有源箝位技术专利,并获准。其特点是在第二代有源箝位的基础上将磁芯复位时释放出的能量转送至负载。所以实现了更高的转换效率。它共有三个电路方案:其中一个方案可以采用N沟MOSFET。因而工作频率较高,采用该技术可以将ZVS软开关、同步整流技术、磁能转换都结合在一起,因而它实现了高达92%的效率及250W/in3以上的功率密度。
MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,SIMULINK是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包,本课程设计的仿真即需要在SIMULINK中来完成电路的仿真与计算。通过系统建模和仿真,掌握和运用MATLAB/SIMULINK工具分析系统的基本方法。直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。习惯上,DC-DC变换器包括以上两种情况。直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路、桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。直流斩波电路广泛应用于直流传动和开关电源领域,是电力电子领域的热点。全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR和电力MOSFET的优点,具有良好的特性。目前已取代了原来GTR和一部分电力MOSFET的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。所以,此课程设计选题为:设计使用全控型器件为IGBT的降压斩波电路。主要讨论电源电路、降压斩波主电路、控制电路、驱动电路和保护电路的原理与设计。二、设计方案本课程设计主要应用了MATLAB 软件及其组件之一SIMULINK进行系统的设计与仿真。系统主要包括:直流稳压电源部分、BUCK降压斩波主电路部分、PWM控制部分和负载。
BUCK降压斩波主电路部分拖动带反电动势的电阻负载,模拟现实中一般的负载,若实际负载中没有反电动势,只需令其为零即可。在SIMULINK中完成各个功能模块的绘制后,即可进行仿真和调试,用SIMULINK提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个BUCK变换器的研究与设计。电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断。来完成整个系统的功能。因此,一个完整的降压斩波电路也应包括主电路,控制电路,驱动电路和保护电路这些环节。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图1所示。图1电路框图在图1结构框图中,控制电路是用来产生IGBT降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在IGBT控制端和公共端之间,可以使其开通或关断的信号。通过控制IGBT的开通和关断来控制IGBT降压斩波电路的主电路工作。保护电路是用来保护电路的,防止电路产生过电流、过电压和欠电压等现象损害电路设备。三、主电路设计1、主电路设计如图2,设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20Ω,工作频率分别为20KHz.分别仿真将工作频率改为50KHz,电感改为约临界电感值的一半进行对比分析。图2 降压斩波主电路图2、保护电路设计1)过电压保护所谓过电压保护,即指流过IGBT两端的电压值超过IGBT在正常工作时所能承受的最大峰值电压Um都称为过电压。产生过电压的原因一般由静电感应、雷击或突然切断电感回路电流时电磁感应所引起。其中,对雷击产生的过电压,需在变压器的初级侧接上避雷器,以保护变压器本身的安全;而对突然切断电感回路电流时电磁感应所引起的过电压,一般发生在交流侧、直流侧和器件上,因而,下面介绍直流斩波电路主电路的过电压保护方法。其电路如图3所示
图 3 过电压保护电路2)过电流保护所谓过电流保护,即指流过IGBT的电压值超过IGBT在正常工作时所能承受的最大峰值Im都称为过电流。这里采用图4所示的电路图4 过电流保护电路3) IGBT的保护① 静电保护IGBT的输入级为MOSFET,所以IGBT也存在静电击穿的问题。防静电保护极为必要。在静电较强的场合,MOSFET容易静电击穿,造成栅源短路。采用以下方法进行保护:应存放在防静电包装袋、导电材料包装袋或金属容器中。取用器件时,应拿器件管壳,而不要拿引线。工作台和烙铁都必须良好接地,焊接时电烙铁功率应不超过25W,最好使用12V~24V的低电压烙铁,且前端作为接地点,先焊栅极,后焊漏极与源极。在测试MOSFET时,测量仪器和工作台都必须良好接地,MOSFET的三个电极未全部接入测试仪器或电路前,不要施加电压,改换测试范围时,电压和电流都必须先恢复到零。② 过电流保护IGBT过电流可采用集射极电压状态识别保护方法,电路如图5所示图 5 集射极电压状态识别保护电路③ 短路保护图 6 短路保护电路4) 缓冲电路缓冲电路(吸收电路)的作用主要是抑制器件的内因过电压、/dt、过电流和di/dt,减小器件的开关损耗。这里采用由R LC组成的电路来吸收电压、电流,如图7。图7 缓冲电路3、主电路的计算和元器件的参数选型1)计算①定义开关管导通时间ton与开关周期Ts的比值为占空比,用Dc表示Dc=ton/Ts②电感Lc= Uo(1-Dc)Ts/(2Po*Po) 其中: Po= Uo*Io③纹波电压U1= Uo(1-Dc)Ts* Ts/8LC④电容C= Uo(1-Dc)Ts* Ts/8LU12)元器件参数①主开关管可以使用MOSFET,开关频率为20Hz;②输入200V,输出50V,可确定占空比为Dc=25%③选择电感Lc= Uo(1-Dc)Ts/(2Po*Po)=3.75*10^(-4)H
这个值是电感电流连续与否的临界值,L>Lc则电感电流连续,试剂电感值可选为1.2倍的临界电感值,可选择为4.5×10˜4H;④据波纹的要求计算电容值C= Uo(1-Dc)Ts* Ts/8LU1=2.6*10^(-4)F⑤当开关频率为50kHz时,L=1.8*10^(-4)H,C=1.04*10^(-4)四、Simulink仿真系统设计1、建立一个buck的新模型在“SimpowerSytems/Electrical Sources”库中选择”DC voltage source”直流电压模块在对话框中将直流电压设置为200V。如下图:在“SimPowerSystems/ElectricalSources”库中选择“Series RLC Branch”,右键选择单击并拖动,在复制出2个该元件,分别在对话框中“Branch Type”下拉菜单中选择R、L、C,按照1)的计算结果赋值,在电感元件的对话框里最下方“Mesurement”选择“Branch voltage and current”,以使能电感的端电压测量和电流测量,电阻元件的对话框里“Mesurement”选择“Branch voltage”,以使能负载电阻端的电压测量,亦即Buck变换器的输出电压,具体如下图:在“SimPowerSystems/ Mesurement” 库中选择“Multimeter”,对话框中的坐便又“Ub;L”、“Ib:L”、“Ub:R”几项,依次选中,在右边窗口中显示,这样就可以对电感电压、电感电流、负载电阻电压进行测量,如下图:在“Simulink/Source”库中选择“Pulse Generator”库中选择“Pulse Center”,对话框中“Period(secs)”设置为20e-6,“Pulse Width(% of period)”设置为25,其他设置保持为缺省值。如下图:在“Simulink、Signal Routing”库中选择:“Bus Selector”,在复制出1个,分别连接在“Mosfet”和“Diode”的测试端口,将“Bus Selector”设置为测试各自的电流,连接二极管的“Bus Selector”对话框设置,如下图:
在“Simulink/sink”库中选择示波器“Scope”,将其设置为6个输入通道,具体的设置方法如下图:为了实时显示输出电压的平均值,在“SimPowerSystems/Extra Library/ Mesurement”里面选取“Mean Value”,双击打开对话框,将其参数设置中的“Averaging Period(s)”设置为20e-6(求平均值时的这个周期设置可以使信号周期的整数倍),在“Simulink/sink”里面选取“Display”。如下图:在“SimpowerSytems/Power Electrical Sources”库中选择“Mosfet”和 “Diode”模块,参数保留其缺省值。如下图:最终完成仿真模型如图所示。仿真时间为0.1s,仿真算法为ode23tb。2、仿真结果分析在菜单栏“Simulation”里面的“Configuration Parameters”里面设置仿真算法,仿真算法可以选取步长“Variable-step”下的ode23tb,其他设置可以保持缺省,其中将“Max-step”(最大步长)设置的比较小(如1e-6或者1e-5)能够使输出波形较为平滑。本例中“Max-step”选择缺省值(auto)。如下图上到下的波形依次为MOSFET们极触发脉冲Ug、电感电压Ul、电感电流il、输出电压Uo、MOSFET电流iT、二极管电流iD。电感电流连续,各个波形与理论波形规律一致。f=20kHzF=50kHz对比上面两个图可知,在其他条件不变的情况下,若开关频率提高n倍,则电感值减少为1/n,电容值也减少到1/n,从式中也可以得到这个结论。另外可以发现图中,输出电压平均值没有达到50 v,而只有48.91v左右,这是由于反并联二极管的导通压降使得输出比理论值小,在仿真模型中,二极管的导通压降为0.8V,导通时通态电阻为0.001Ω,流经电流也会造成一定的电压降,因此输出电压比50V小,在前文分析稳态时的工作波形时,得到的结果是在假设了导通后开关管电压为0V以后,当开关器不是理想器件时,电压和电流会有变化。

5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
电力电子技术课程设计之降压斩波电路
一、概述
从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。发热增多,体积缩小,难过高温关。因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。工程师们开始研究各种避开开关损耗的软开关技术。虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。
第 1 页
有源箝位技术历经三代,且都申报了专利。第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到

㈤ simulink里斩波器模块在哪

这个是滤波模块,以R2011b为例, 或者你可以直接搜索名字:1st-Order Filter

㈥ 直流斩波电路有哪三种控制方式

斩波电路的控制方式通常有三种:时间比例控制方式、瞬时值和平均值控制方式、时间比与瞬时值混合控制方式。

直流斩波电路的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器,直流斩波电路一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况。

直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。


(6)斩波电路模块扩展阅读:

直流斩波是一种用斩波器斩切直流的方式。

用斩波器斩切直流的基本思想是:如果改变开关的动作频率,或改变直流电流接通和断开的时间比例,就可以改变加到负载上的电压、电流平均值。

直流斩波器具有效率高、体积小、重量轻、成本低等优点,现广泛应用于地铁、电力机车、城市无轨电车以及电瓶搬运车等电力牵引设备的变速拖动中。

直流斩波器的输出电压平均值可以通过改变占空比,即通过改变开关器件导通或关断时间来调节,常用的改变输出平均电压的调制方法有以下三种:

1、脉冲宽度调制。开关器件的通断周期T保持不变,只改变器件每次导通的时间,也就是脉冲周期不变,只改变脉冲的宽度,即定频调宽。

2、脉冲频率调制。开关器件每次导通的时间不变,只改变通断周期T或开关频率,也就是只改变开关的关断时间,即定宽调频,称为调频。

3、两点式控制。开关器件的通断周期T和导通时间均可变,即调宽调频,亦可称为混合调制。当负载电流或电压低于某一最小值时,使开关器件导通;当电流或电压高于某一最大值时,使开关器件关断。导通和关断的时间以及通断周期都是不确定的。

阅读全文

与斩波电路模块相关的资料

热点内容
重庆万家乐热水器售后维修电话 浏览:806
露台已经贴过地砖了怎么做防水 浏览:166
宝马被轻微追尾维修费 浏览:262
淄博洗衣机维修电话是多少 浏览:467
防水防腐一级是什么意思 浏览:160
国家电线跨房屋怎么补赏 浏览:940
合约机保修多久 浏览:314
如何做好家电维修规划 浏览:471
迷龙家具有哪些 浏览:326
手机维修平均多久出师 浏览:584
澳洲iphone保修 浏览:266
象鼻腿家具 浏览:42
国家电网英语六级起什么作用 浏览:559
郑州市华为维修点 浏览:379
无人为保修 浏览:826
免砸砖防水胶怎么做 浏览:186
报销发票保修 浏览:220
夏普打印机如何进入维修模式呀 浏览:853
房顶隔热菜园怎么防水 浏览:830
橡胶防水怎么涂 浏览:896