导航:首页 > 电器电路 > 电路理论史

电路理论史

发布时间:2022-09-27 07:57:33

① 分布参数电路的简史

对分布参数电路的研究始于19世纪中叶。1856年物理学家开尔文针对当时利用海底电缆传送电报出现的信号延迟、畸变和变弱的现象,首先提出了海底电缆的理论,成为研究分布参数电路的先驱。1893年,英国工程师O.亥维赛利用J.C.麦克斯韦的自由空间电磁波理论,对二线传输线(包括同轴传输线)导引的电磁波,首次提出了简明而又普遍化的解释,从而全面地建立了传输线(长线)的经典理论。

② 大学电路理论主要学习什么,研究对象是什么

邱关源的《电路》教材。

本书主要内容有:电路模型和电路定律、电版阻电路的等效变权换、电阻电路的一般分析、电路定理、含有运算放大器的电阻电路、一阶电路、二阶电路、相量法、正弦稳态电路的分析,含有耦合电感的电路、三相电路、非正弦周期电流电路和信号的频谱、拉普拉斯变换、网络函数、电路方程的矩阵形式、二端口网络、非线性电路简介、均匀传输线,另有磁路和铁心线圈及PSPICE简介两个附录。
研究对象是电路,就是对不同电路进行分析。

③ 大学电路原理

我刚考完研,电路原理应该算比较有心得。
如果你是电气专业的话,电路原理是最基础最重要的一门课。学不好它,后面的模电、电机、电力系统分析、高压简直没办法学。
对于这门课,你要想真正的领悟和掌握家,奥秘就在于不能停止思考。而且我觉得这是最重要的一点。我以江辑光的电路原理为例(这本书编的相当不错)解释为何不能停止思考。
电路几乎是你第一本开始培养你工程师思维的书,它不同于你的数学物理,很多可以理论推导。而电路更多的是你的思考和不断累积的经验。
在江的书中前面用了四章讲解了电阻电路的基本知识,包括参考方向问题、替代定理,支路法、节点电压、回路电流、戴维南、特勒根、互易定理。这些基本内容都要掌握到烂熟于心才能在之后的章节里灵活的运用。怎样才能烂熟于心?我时刻提醒自己不要停止思考。江书的课后习题就是最好的激发你大脑思考能力的宝库。可以说里面的每一道题都极具针对性,题目并不难。一个人合格的工程师应该把更多的时间留给思考如何最合理的解决问题,而不是花大把时间计算,电路的计算量是非常大的,一个节点电压方程组有可能是四元方程,显然这些东西留给计算器算就好了。为了学好电路你应该买一个卡西欧991,节省那些不必要浪费的时间留下来思考问题本身。
前四章的基础一定要打得极为扎实,不是停留在只是会用就行了,那样学不好电路。你要认真研究到每个定理是怎么来的,最好自己可以随手证明,你要知道戴维宁是有叠加推出来的,而叠加定理又是在电阻电路是线性时不变得来的,互易定理是由特勒根得来的。这一切知识都是靠细水长流一点点积累出来的,刚开始看到他们你会觉得迷糊,但你要相信这是一个过程,渐渐地你会觉得电路很美妙甚至会爱上它。当你发现答案上面用一页纸才能解出来的答案,你只用五六行就可以将其解决,那时候你能感觉电路好像是从身体中流淌出来一般。这就是一直要追求的境界。
后面就是非线性,这一章很多学校要求都不高,而且考起来也不难,最为兴趣的话研究起来很有意思。
接着后面是一阶二阶动态电路,这里如果你高数的微分方程学得不错的话,高中电路知识都极本可以解了。这一部分的本质就是求解微分方程。说白了,你根据电路列出微分方程是需要你用电路知识的,剩下来怎么解看你数学功底的。但是电路老师们为了给我们减轻压力有把一阶电路单独拿出来做了一个专题,并将一切关于它上面的各支路电流或者电压用一个简单的结论进行了总结,即三要素法。学了三要素一阶电路连方程也不用列了。只要知道电路初始状态、末状态和时间常数就可以得到结果。如果你愿意思考,其实二阶电路也可以类比它的,在二阶电路中你只要求出时间常数,初值和末值,同样也可以求通解。在这部分的最后,介绍了一种美妙的积分——卷积。很多人会被他的名字唬住,提起来就很高科技的样子。其实它的确很高科技,但只要你掌握它的精髓,能够很好的用它,对你的电路思维有极大的提升,关于卷积在知乎和网络上都有很多很好的解释和生动的例子,我也是从他们那里汲取经验的。我在这里只能提醒你,不要因为老师不做重点就忽略卷积,否则这将无异于丢了一把锐利的宝剑。记得我在学习杜阿美尔积分(卷积的一种)的时候,感觉如或至宝,虽然书上对它的描述只有一句话。但为了那一句我的心情竟久久无法平静,因为实在太好用了。
接下来是正弦电路,这里主要是要理解电路从时域域的转化,这里是电路的第一次升华,伟大的人类用自己的智慧把交流量头上打个点,然后一切又归于平静了,接下来还是前四章的知识。我想他用的就是以不变应万变的道理吧,所有量都以一个频率在变,其效果就更想对静止差不多了吧,但是他们对电容和电感产生了新的影响,因为他们的电流电压之间有微分和积分的关系。在新的思路下你可以将电感变成jwl,将电容变成1/jwc,接下来你又改思考为什么可以这样变。这是在极坐标下的电流电压关系可以推导出来的。你要再追根溯源说,为什么可以用复数来代替正弦?那是因为欧拉公式将正弦转化成了复数表达。你还问欧拉公式又是什么?它是迈克劳林(泰勒)公式得到的。你必须不断地思考,不断地提问才能明白这一起是怎么回事。不过这都是基础,在正弦稳态这里精髓在于画向量图,能正确地画出向量图你才能说真正理解了它。向量图不是乱画的,不是你随便找个支路放水平之后就可以得到正确的图,有时候走错了路得不到正确答案不说,反而可能陷入思维漩涡。做向量图一般要以电阻支路或者含有电阻的支路为水平向量,接下来根据它的电流电压来一步步推。而且很多难题都是把很多信息隐藏在图里面,不画得一幅好图你是解不出来的。这也需要自己揣摩。
后面是互感,我相信很多人被同名端折磨的死去活来。其实,电感是描述,线圈建立磁场能力的量,电感大了,产生磁场越大。所以同名端的意思就是:从同名端流入的电流,磁场相加,表现在方程上为电感相加。只要牢记这一点,列含有互感的方程式就不会错了。你不要胡思乱想,有时候你会被电流方向弄糊涂,别管它,图上画的是参考方向,就算你假设的方向与实际方向反了,对真确结果依然没有丝毫影响。这里其实是考察你对参考方向的理解。
然后是谐振,这是很有趣也很有用的一节,无论是电气,通信,模电还是高压都离不开它。这是在一种美妙的状态下,电厂能量和立场能量达到完美的交替。通过谐振可以实现滤波、升压等具有实际意义的电路。但就电路内容来说这里并不难,总结一下就是,阻抗虚部为零则串联谐振,导纳虚部为零为并联谐振。在求解谐振频率时有时候用导纳求解会比较方便,这在于多做题开阔思路。
接下来是三相电路。要我来说,三相电路是最简单的部分。很多人觉得它难(当然一开始我也觉得它让人头晕),完全知识因为我们总是害怕恐惧本身。其实你看它有三个但他一点也不难。这要你头脑清晰别被他的表面吓住了。三相电路跟跟普通电路没有任何区别。你在前面章节做到五个六个电源你也不会害怕,因为你知道,一个人所有元件都告知的电路,用节点电压或回路电流肯定是可以求的出来的。为什么到了三相你就被吓得魂不守舍了。你是不明白线电压和相电流的关系,还是一相断线对中线电流的影响?你管那些干嘛?什么相啊线呀都只是个代号而已。你把它当一个普通电路解,他就是一个普通电路而已。很多同学总是喜欢在线和相的关系上纠结。其实一句话就可以概括的:线量都是向量的根3倍。其实这些都不用记,需要的时候画个图就来了。最重要的是你要明白三相只不过是个有三个电源的普通电路而已。你只要会节点电压法,不学三相的知识都可以解答的很好。当你以一个正常电路看它的时候,三相就已经学的差不多了。三相唯一的难点在计算,只要你是个细心的人,平时多找几个题算算,以后三相想错都难。
后面是拉普拉斯变换。这里是电路思维的又一次飞跃。人们发现高阶电路真的不好求解,而且如果电源改变的话除了卷积,找不到更好的办法。所以为了方便的使用卷积,前辈们把拉氏变换引入电路。如果说前面正弦稳态时域到频域是由泰勒公式一步步推来的。那这里就是高数的最后一章——傅立叶变换推倒的。关于傅立叶知乎也有许多精彩的讲解,自己找吧。傅立叶变换有两种形式,一种是时域形态,一种是频域形态。而拉普拉斯变换就是将由频域形态的傅立叶变换,推广到复频域形态。其基本变换公式也是由傅立叶变换公式推广得到的。这一章的学习,你要从变换公式入手,自己把基本的几个变换推导出来。还要理解终值定理和初值定理,这两个定理是检验结果正确与否的有力证据。
电路你知道思路是一回事,能做对是另外一回事。只有在学习中不断培养自己开阔的视野和强大的计算能力才可以学好这门课,学电路是要靠硬功夫的,你看着老师解题的时候感觉信手拈来,自己却百思不得其解。那是功夫没下到位。考研看了电路大概一百天,新书都翻烂了,我自己的旧书都快散架了,各种习题不计重复的做了至少1500道以上。当我做电路的时候,我会觉得时间会停止,我根本感受不到自习室里还有别人。那种在你冥思苦想终于解决一个问题所带了的足以让你笑出声来的快乐,是陪伴着我的最好的药。每天走在月光下,我都会想,如果当不了科学家,那就干点别的吧。
所以说啊,要学好电路,还是你要发自内心的爱上它。
ps:推荐几本电路原理参考书,江辑光的《电路原理》清华大学出版社,周守昌的《电路原理上、下》,邱关源的《电路》,电路一本是不够的,要全面的掌握知识必需从多角度考量,不同老师看待问题方式不同,要多加比较才能发现精髓。电路习题集可以买清华大学的红皮书——研究生入学习题集。还有清华大学陆文娟的《学习指导与习题集》。这些题目很经典,难度适中。如果想进一步提高电路水平请看向国菊编的《电路经典题型》,个人觉得向老师编的这本是集结电路史上最强的题目,能完全吃透它,将非常了不起,不过题目都是二十多年前的了,很多内容已经不讲了。但是作为提高绝对可以增加十年功力。

④ 欧姆《伽伐尼电路:数学研究》

1826年,欧姆获准半年假期,到柏林去研究电路。在柏林,欧姆根据库仑在1784年发明的扭力抨,设计出一种丝悬磁针电流计,这种仪器使他能正确地将电流强度作为一个电路参量抽象出来。另外,他又根据塞贝克在1822年发现的温差电效应,设计出一台温差电池。温差电池的优点在于,它的电动势与温差所固有的电极化的现象,这就使他能够将电动势抽象出来,作为电路的另一个重要参量。欧姆就是这样在1826年通过实验总结出了欧姆定律:I = E / ( R + r) 其中,I表示电流强度,E表示电动势,R为电路电阻,r为电池内阻。1827年,欧姆从热和电的相似性出发,进行类比,运用傅立叶热分析理论,从理论上推导出了欧姆定律,并引入了欧姆定律的微分形式,从而肯定了他在一年前的实验结果。他将这项成果总结在《数学推导的伽伐尼电路》(以下简称《电路》)一书中。欧姆的这部著作,是19世纪德国的第一部数学物理论著。

⑤ 电工学的理论

19世纪末在电工学发展的进程中形成了许多技术基础理论分支。交流电路理论,磁路理论,电机与变压器理论,电能传输理论,电工材料理论,电介质理论,气体放电理论等都发展成为系统的科学知识。20世纪50年代以来,计算机技术、电子技术以及工程控制论等一系列新兴的科学技术理论蓬勃发展,基础科学、应用科学和技术开发之间的知识结构更加紧密,各门学科与专业之间互相渗透,互相交叉,使科学技术和社会生产形成一个既深入分化又高度综合的庞大复杂的整体,同时也促进了电工理论的发展。静电场、电磁场等结构复杂又包括多种媒质的三维物理场求解方法的研究取得新进展。矩量法、变分原理、函数空间等都引入了电工理论。基于等效模型的概念发展了虚拟的磁荷与磁流模型,研究了多种动态位及不同的规范选择,提出了有关广义能量的定理等。由于系统与元件相结合而扩大了元件的内涵,包括了逻辑门、可控源、回转器以及大规模集成块等。各类工程系统的发展形成了共同的网络理论基础,使网络扩展成为研究某种特定空间结构和运动状态的一般性理论方法。广义网络理论又将“场”与“路”结合起来,出现新的边缘理论领域,如物理场论的网络模拟、辐射场的网络方法、等离子体的网络图解等;引用系统论的研究成果,将系统的整体性能和行为与系统结构、参数及局部物理量结合起来,进一步丰富了网络问题的内容。系统稳定性分析,多维系统的研究,状态空间的拓扑等值性,动态系统的反馈理论和渐近性问题,以及网络故障的自动侦察、诊断等,都成为引人注意的研究课题。在人类历史发展的漫长岁月里,技术革命是强大的推动力。取火使人类摆脱了原始蒙昧;金属工具帮助人类建立起农业文明;动力,特别是电能,扩大了人类体力劳动能力,出现了现代化的大工业生产。今天,以电子和计算机技术为特征的新技术又在延伸人类的智力功能。正是电磁规律在能源、信息、控制等领域的技术应用,描绘出现代化社会的蓝图,形成新技术革命的主流。它冲激着社会生产和生活的每一个角落,不仅大幅度地提高了社会生产力,创造出丰富的物质财富,而且改变着人们的生活方式、社会行为、教育训练、思维方法,促进了社会的精神文明。电工正在与现代科学技术相汇合,继续发挥社会支柱的作用。

⑥ 表示科目的英语单词

哲学 Philosophy
马克思主义哲学 Philosophy of Marxism
中国哲学 Chinese Philosophy
外国哲学 Foreign Philosophies
逻辑学 Logic
伦理学 Ethics
美学 Aesthetics
宗教学 Science of Religion
科学技术哲学 Philosophy of Science and Technology
经济学 Economics
理论经济学 Theoretical Economics
政治经济学 Political Economy
经济思想史 History of Economic Thought
经济史 History of Economic
西方经济学 Western Economics
世界经济 World Economics
人口、资源与环境经济学 Population, Resources and Environmental Economics
应用经济学 Applied Economics
国民经济学 National Economics
区域经济学 Regional Economics
法学 Law
Communist Movement
中共党史(含党的学说与党的建设) History of the Communist Party of China
(including the Doctrine of China Party and Party Building)
马克思主义理论与思想政治教育 Ecation of Marxist Theory and Ecation in Ideology and Politics
国际政治学 International Politics
国际关系学 International Relations
外交学 Diplomacy
社会学 Sociology
社会学 Sociology
人口学 Demography
人类学 Anthropology
民俗学(含中国民间文学) Folklore (including Chinese Folk Literature)
民族学 Ethnology
民族学 Ethnology
马克思主义民族理论与政策 Marxist Ethnic Theory and Policy
中国少数民族经济 Chinese Ethnic Economics
中国少数民族史 Chinese Ethnic History
中国少数民族艺术 Chinese Ethnic Art
教育学 Ecation
教育学 Ecation Science
教育学原理 Ecational Principle
课程与教学论 Curriculum and Teaching Methodology
教育史 History of Ecation
比较教育学 Comparative Ecation
学前教育学 Pre-school Ecation
高等教育学 Higher Ecation
成人教育学 Alt Ecation
职业技术教育学 Vocational and Technical Ecation
特殊教育学 Special Ecation
教育技术学 Ecation Technology
心理学 Psychology
基础心理学 Basic Psychology
发展与心理学 Developmental and Ecational Psychology
应用心理学 Applied Psychology
体育学 Science of Physical Culture and Sports
体育人文社会学 Humane and Sociological Science of Sports
运动人体科学 Human Movement Science
体育教育训练学 Theory of Sports Pedagogy and Training
民族传统体育学 Science of Ethnic Traditional Sports
文学 Literature
中国语言文学 Chinese Literature
文艺学 Theory of Literature and Art
语言学及应用语言学 Linguistics and Applied Linguistics
汉语言文字学 Chinese Philology
中国古典文献学 Study of Chinese Classical Text
中国古代文学 Ancient Chinese Literature
中国现当代文学 Modern and Contemporary Chinese Literature
中国少数民族语言文学 Chinese Ethnic Language and
Literature
比较文学与世界文学 Comparative Literature and World Literature
外国语言文学 Foreign Languages and Literatures
英语语言文学 English Language and Literature
俄语语言文学 Russian Language and Literature
法语语言文学 French Language and Literature
德语语言文学 German Language and Literature
日语语言文学 Japanese Language and Literature
印度语言文学 Indian Language and Literature
西班牙语语言文学 Spanish Language and Literature
阿拉伯语语言文学 Arabic Language and Literature
欧洲语言文学 European Language and Literature
亚非语言文学 Asian-African Language and Literature
外国语言学及应用语言学 Linguistics and Applied Linguistics in
Foreign Languages
新闻传播学 Journalism and Communication
新闻学 Journalism
传播学 Communication
艺术学 Art
艺术学 Art Theory
音乐学 Music
美术学 Fine Arts
设计艺术学 Artistic Design
戏剧戏曲学 Theater and Chinese Traditional Opera
电影学 Film
广播电视艺术学 Radio and television Art
舞蹈学 Dance
历史学 History
历史学 History
史学理论及史学史 Historical Theories and History of Historical Science
考古学及博物馆学 Archaeology and Museology
历史地理学 Historical Geography
历史文献学(含敦煌学、古文字学) Studies of Historical Literature (including
Paleography and Studies of Dunhuang)
专门史 History of Particular Subjects
中国古代史 Ancient Chinese History
中国近现代史 Modern and Contemporary Chinese History
世界史 World History
理学 Natural Science
数学 Mathematics
基础数学 Fundamental Mathematics
计算数学 Computational Mathematics
概率论与数理统计 Probability and Mathematical Statistics
应用数学 Applied mathematics
运筹学与控制论 Operational Research and Cybernetics
物理学 Physics
理论物理 Theoretical Physics
粒子物理与原子核物理 Particle Physics and Nuclear Physics
原子与分子物理 Atomic and Molecular Physics
等离子体物理 Plasma Physics
凝聚态物理 Condensed Matter Physics
声学 Acoustics
光学 Optics
无线电物理 Radio Physics
化学 Chemistry
无机化学 Inorganic Chemistry
分析化学 Analytical Chemistry
有机化学 Organic Chemistry
物理化学(含化学物理) Physical Chemistry (including Chemical Physics)
高分子化学与物理 Chemistry and Physics of Polymers
天文学 Astronomy
天体物理 Astrophysics
天体测量与天体力学 Astrometry and Celestial Mechanics
地理学 Geography
自然地理学 Physical Geography
人文地理学 Human Geography
地图学与地理信息系统 Cartography and Geography Information System
大气科学 Atmospheric Sciences
气象学 Meteorology
大气物理学与大气环境 Atmospheric Physics and Atmospheric Environment
海洋科学 Marine Sciences
物理海洋学 Physical Oceanography
海洋化学 Marine Chemistry
海洋生理学 Marine Biology
海洋地质学 Marine Geology
地球物理学 Geophysics
固体地球物理学 Solid Earth Physics
空间物理学 Space Physics
地质学 Geology
矿物学、岩石学、矿床学 Mineralogy, Petrology, Mineral Deposit Geology
地球化学 Geochemistry
古生物学与地层学(含古人类学) Paleontology and Stratigraphy (including
Paleoanthropology)
构造地质学 Structural Geology
第四纪地质学 Quaternary Geology
生物学 Biology
植物学 Botany
动物学 Zoology
生理学 Physiology
水生生物学 Hydrobiology
微生物学 Microbiology
神经生物学 Neurobiology
遗传学 Genetics
发育生物学 Developmental Biology
细胞生物学 Cell Biology
生物化学与分子生物学 Biochemistry and Molecular Biology
生物物理学 Biophysics
生态学 Ecology
系统科学 Systems Science
系统理论 Systems Theory
系统分析与集成 Systems Analysis and Integration
科学技术史 History of Science and Technology
工学 Engineering
力学 Mechanics
一般力学与力学基础 General and Fundamental Mechanics
固体力学 Solid Mechanics
流体力学 Fluid Mechanics
工程力学 Engineering Mechanics
机械工程 Mechanical Engineering
机械制造及其自动化 Mechanical Manufacture and Automation
机械电子工程 Mechatronic Engineering
机械设计与理论 Mechanical Design and Theory
车辆工程 Vehicle Engineering
光学工程 Optical Engineering
仪器科学与技术 Instrument Science and Technology
精密仪器及机械 Precision Instrument and Machinery
测试计量技术及仪器 Measuring and Testing Technologies and Instruments
材料科学与工程 Materials Science and Engineering
材料物理与化学 Materials Physics and Chemistry
材料学 Materialogy
材料加工工程 Materials Processing Engineering
冶金工程 Metallurgical Engineering
冶金物理化学 Physical Chemistry of Metallurgy
钢铁冶金 Ferrous Metallurgy
有色金属冶金 Non-ferrous Metallurgy
动力工程及工程热物理 Power Engineering and Engineering Thermophysics
工程热物理 Engineering Thermophysics
热能工程 Thermal Power Engineering
动力机械及工程 Power Machinery and Engineering
流体机械及工程 Fluid Machinery and Engineering
制冷及低温工程 Refrigeration and Cryogenic Engineering
化工过程机械 Chemical Process Equipment
电气工程 Electrical Engineering
电机与电器 Electric Machines and Electric Apparatus
电力系统及其自动化 Power System and its Automation
高电压与绝缘技术 High Voltage and Insulation Technology
电力电子与电力传动 Power Electronics and Power Drives
电工理论与新技术 Theory and New Technology of Electrical Engineering
电子科学与技术 Electronics Science and Technology
物理电子学 Physical Electronics
电路与系统 Circuits and Systems
微电子学与固体电子学 Microelectronics and Solid State Electronics
电磁场与微波技术 Electromagnetic Field and Microwave Technology
信息与通信工程 Information and Communication Engineering
通信与信息系统 Communication and Information Systems
信号与信息处理 Signal and Information Processing
控制科学与工程 Control Science and Engineering
控制理论与控制工程 Control Theory and Control Engineering
检测技术与自动化装置 Detection Technology and Automatic Equipment
系统工程 Systems Engineering
模式识别与智能系统 Pattern Recognition and Intelligent Systems
导航、制导与控制 Navigation, Guidance and Control
计算机科学与技术 Computer Science and Technology
计算机软件与理论 Computer Software and Theory
计算机系统结构 Computer Systems Organization
计算机应用技术 Computer Applied Technology
建筑学 Architecture
建筑历史与理论 Architectural History and Theory
建筑设计及其理论 Architectural Design and Theory
城市规划与设计(含风景园林规划与设计) Urban Planning and Design (including Landscape Planning and Design)
建筑技术科学 Building Technology Science
土木工程 Civil Engineering
岩土工程 Geotechnical Engineering
结构工程 Structural Engineering
市政工程 Municipal Engineering
供热、供燃气、通风及空调工程 Heating, Gas Supply, Ventilating and Air Conditioning Engineering
防灾减灾工程及防护工程 Disaster Prevention and Rection Engineering and Protective Engineering
桥梁与隧道工程 Bridge and Tunnel Engineering
水利工程 Hydraulic Engineering
水文学及水资源 Hydrology and Water Resources
水力学及河流动力学 Hydraulics and River Dynamics
水工结构工程 Hydraulic Structure Engineering
水利水电工程 Hydraulic and Hydro-Power Engineering
港口、海岸及近海工程 Harbor, Coastal and Offshore Engineering
测绘科学与技术 Surveying and Mapping
大地测量学与测量工程 Geodesy and Survey Engineering
摄影测量与遥感 Photogrammetry and Remote Sensing
地图制图学与地理信息工程 Cartography and Geographic Information Engineering
化学工程与技术 Chemical Engineering and Technology
化学工程 Chemical Engineering
化学工艺 Chemical Technology
生物化工 Biochemical Engineering
应用化学 Applied Chemistry
工业催化 Instrial Catalysis
地质资源与地质工程 Geological Resources and Geological Engineering
矿产普查与勘探 Mineral Resource Prospecting and Exploration
地球探测与信息技术 Geodetection and Information Technology
地质工程 Geological Engineering
矿业工程 Mineral Engineering
采矿工程 Mining Engineering
矿物加工工程 Mineral Processing Engineering
安全技术及工程 Safety Technology and Engineering
石油与天然气工程 Oil and Natural Gas Engineering
油气井工程 Oil-Gas Well Engineering
油气田开发工程 Oil-Gas Field Development Engineering
油气储运工程 Oil-Gas Storage and Transportation Engineering
纺织科学与工程 Textile Science and Engineering
纺织工程 Textile Engineering
纺织材料与纺织品设计 Textile Material and Textiles Design
纺织化学与染整工程 Textile Chemistry and Dyeing and Finishing Engineering
服装设计与工程 Clothing Design and Engineering
轻工技术与工程 The Light Instry Technology and Engineering
制浆造纸工程 Pulp and Paper Engineering
制糖工程 Sugar Engineering
发酵工程 Fermentation Engineering
皮革化学与工程 Leather Chemistry and Engineering
交通运输工程 Communication and Transportation Engineering
道路与铁道工程 Highway and Railway Engineering
交通信息工程及控制 Traffic Information Engineering & Control
交通运输规划与管理 Transportation Planning and Management
载运工具运用工程 Vehicle Operation Engineering
船舶与海洋工程 Naval Architecture and Ocean Engineering
船舶与海洋结构物设计制造 Design and Construction of Naval Architecture and Ocean Structure
轮机工程 Marine Engine Engineering
水声工程 Underwater Acoustics Engineering
航空宇航科学与技术 Aeronautical and Astronautical Science and Technology
飞行器设计 Flight Vehicle Design
航空宇航推进理论与工程 Aerospace Propulsion Theory and Engineering
航空宇航器制造工程 Manufacturing Engineering of Aerospace Vehicle
人机与环境工程 Man-Machine and Environmental Engineering
兵器科学与技术 Armament Science and Technology
武器系统与运用工程 Weapon Systems and Utilization Engineering
兵器发射理论与技术 Armament Launch Theory and Technology
火炮、自动武器与弹药工程 Artillery, Automatic Gun and Ammunition Engineering
军事化学与烟火技术 Military Chemistry and Pyrotechnics
核科学与技术 Nuclear Science and Technology
核能科学与工程 Nuclear Energy Science and Engineering
核燃料循环与材料 Nuclear Fuel Cycle and Materials
核技术及应用 Nuclear Technology and Applications
辐射防护及环境保护 Radiation and Environmental Protection
农业工程 Agricultural Engineering
农业机械化工程 Agricultural Mechanization Engineering
农业水土工程 Agricultural Water-Soil Engineering
农业生物环境与能源工程 Agricultural Biological Environmental and Energy Engineering
农业电气化与自动化 Agricultural Electrification and Automation
林业工程 Forestry Engineering
森林工程 Forest Engineering
木材科学与技术 Wood Science and Technology
林产化学加工工程 Chemical Processing Engineering of Forest Procts
环境科学与工程 Environmental Science and Engineering
环境科学 Environmental Science
环境工程 Environmental Engineering
生物医学工程 Biomedical Engineering
食品科学与工程 Food Science and Engineering
食品科学 Food Science
粮食、油脂及植物蛋白工程 Cereals, Oils and Vegetable Protein Engineering
农产品加工及贮藏工程 Processing and Storage of Agriculture Procts
水产品加工及贮藏工程 Processing and Storage of Aquatic Procts
农学 Agriculture
作物学 Crop Science
作物栽培学与耕作学 Crop Cultivation and Farming System
作物遗传育种学 Crop Genetics and Breeding
园艺学 Horticulture
果树学 Pomology
蔬菜学 Olericulture
茶学 Tea Science
农业资源利用学 Utilization Science of Agricultural Resources
土壤学 Soil Science
植物营养学 Plant Nutrition
植物保护学 Plant Protection
植物病理学 Plant Pathology
农业昆虫与害虫防治 Agricultural Entomology and Pest Control
农药学 Pesticide Science
畜牧学 Animal Science
动物遗传育种与繁殖 Animal Genetics, Breeding and Reproction
Science
动物营养与饲料科学 Animal Nutrition and Feed Science
草业科学 Practaculture Science
特种经济动物饲养学(含蚕、蜂等) The Rearing of Special-type Economic
Animals (including Silkworm, Honeybees, etc.)
兽医学 Veterinary Medicine
基础兽医学 Basic Veterinary Medicine
预防兽医学 Preventive Veterinary Medicine
临床兽医学 Clinical Veterinary Medicine
林学 Forestry
林木遗传育种学 Forest Tree Genetics and Breeding
森林培育学 Silviculture
森林保护学 Forest Protection
森林经理学 Forest Management
野生动植物保护与利用 Wildlife Conservation and Utilization
园林植物与观赏园艺 Ornamental Plants and Horticulture
水土保持与荒漠化防治 Soil and Water Conservation and Desertification Combating
水产学 Fisheries Science
水产养殖学 Aquaculture Science
捕捞学 Fishing Science
渔业资源学 Science of Fisheries Resources
医学 Medicine
基础医学 Basic Medicine
人体解剖与组织胚胎学 Human Anatomy, Histology and Embryology
免疫学 Immunology
病原生物学 Pathogenic Organisms
病理学与病理生理学 Pathology and Pathophysiology
法医学 Forensic Medicine
放射医学 Radiation Medicine
航空航天与航海医学 Aerospace and Nautical medicine
临床医学 Clinical Medicine
内科学(含心血管病学、血液病学、呼吸系病学、消化系病学、内分泌与代谢病学、肾脏病学、风湿病学、传染病学) Internal medicine (including Cardiology, Hematology, Respiratory, Gastroenterology, Endocrinology and Metabolism, Nephrology, Rheuma-tology, Infectious Diseases)
儿科学 Pediatrics
老年医学 Geriatrics
神经病学 Neurology
精神病与精神卫生学 Psychiatry and Mental Health
皮肤病与性病学 Dermatology and Venereology
影像医学与核医学 Imaging and Nuclear Medicine
临床检验诊断学 Clinical Laboratory Diagnostics
护理学 Nursing
外科学(含普通外科学、骨外科学、泌尿外科学、胸心血管外科学、神经外科学、整形外科学、烧伤外科学、野战外科学) Surgery (General Surgery, Orthopedics, Urology, Cardiothoracic Surgery, Neurosurgery, Plastic Surgery, Burn Surgery, Field Surgery)
妇产科学 Obstetrics and Gynecology
眼科学 Ophthalmic Specialty
耳鼻咽喉科学 Otolaryngology
肿瘤学 Oncology
康复医学与理疗学 Rehabilitation Medicine & Physical Therapy
运动医学 Sports Medicine
麻醉学 Anesthesiology
急诊医学 Emergency Medicine
口腔医学 Stomatology
口腔基础医学 Basic Science of Stomatology
口腔临床医学 Clinical Science of Stomatology
公共卫生与预防医学 Public Health and Preventive Medicine
流行病与卫生统计学 Epidemiology and Health Statistics
劳动卫生与环境卫生学 Occupational and Environmental Health
营养与食品卫生学 Nutrition and Food Hygiene
儿少卫生与妇幼保健学 Maternal, Child and Adolescent Health
卫生毒理学 Hygiene Toxicology
军事预防医学 Military Preventive Medicine
中医学 Chinese Medicine
中医基础理论 Basic Theories of Chinese Medicine
中医临床基础 Clinical Foundation of Chinese Medicine
中医医史文献 History and Literature of Chinese Medicine
方剂学 Formulas of Chinese Medicine
中医诊断学 Diagnostics of Chinese Medicine
中医内科学 Chinese Internal Medicine
中医外科学 Surgery of Chinese Medicine
中医骨伤科学 Orthopedics of Chinese Medicine
中医妇科学 Gynecology of Chinese Medicine
中医儿科学 Pediatrics of Chinese Medicine
中医五官科学 Ophthalmology and Otolaryngoloy of Chinese Medicine
针灸推拿学 Acupuncture and Moxibustion and Tuina of Chinese medicine
民族医学 Ethnomedicine
中西医结合医学 Chinese and Western Integrative Medicine
中西医结合基础医学 Basic Discipline of Chinese and Western Integrative
中西医结合临床医学 Clinical Discipline of Chinese and Western Integrative Medicine
药学 Pharmaceutical Science
药物化学 Medicinal Chemistry
药剂学 Pharmaceutics
生药学 Pharmacognosy
药物分析学 Pharmaceutical Analysis
微生物与生化药学 Microbial and Biochemical Pharmacy
药理学 Pharmacology
中药学 Science of Chinese Pharmacology
军事学 Military Science
军事思想学及军事历史学 Military Thought and Military History
军事思想学 Military Thought
军事历史学 Military History
战略学 Science of Strategy
军事战略学 Military Strategy
战争动员学 War Mobilization
战役学 Science of Operations
联合战役学 Joint Operation
军种战役学(含第二炮兵战役学) Armed Service Operation (including Operation of Strategic Missile Force)
战术学 Science of Tactics
合同战术学 Combined-Arms Tactics
兵种战术学 Branch Tactics
军队指挥学 Science of Command
作战指挥学 Combat Command
军事运筹学 Military Operation Research
军事通信学 Military Communication
军事情报学 Military Intelligence
密码学 Cryptography
军事教育训练学
(含军事体育学) Military Ecation and Training (including Military Physical Training)
管理学 Management Science
管理科学与工程 Management Science and Engineering
工商管理学 Science of Business Administration
会计学 Accounting
企业管理学(含财务管理、市场营销学、人力资源管理学) Corporate Management (including Financial Management, Marketing, and Human Resources Management)
旅游管理学 Tourist Management
技术经济及管理学 Technology Economy and Management
农林经济管理学 Agricultural and Forestry Economics & Management
农业经济管理学 Agricultural Economics & Management
林业经济管理学 Forestry Economics & Management
公共管理学 Science of Public Management

这些,希望能帮到你 ^_^

⑦ 电路理论及相关科学技术的发展简史

电路理论是当代电气工程与电子科学技术的重要理论基础之一。电路理论与电磁学、电子科学与技术、通信、电气工程、自动控制、计算机科学技术等学科相互促进、相互影响。经历了一个多世纪的漫长道路以后,电路理论已经发展成一门体系完整、逻辑严密、具有强大生命力的学科领域。

人类对电磁现象的认识始于对静电、静磁现象的观察。

1729年,英国人 S.格雷 将 材料分为两类—— 导体和绝缘体 。

1749年,美国科学家 富兰克林 提出了正电荷和负电荷的概念。

1785——1789年,法国人 库仑 定量地研究了两个带电体间的相互作用,得出了历史上最早的静电学定律——库仑定律。

库仑定律(Coulomb's law)是 静止 点电荷相互作用力的规律 。1785年法国科学家C,-A.de库伦由实验得出, 真空 中两个静止的 点电荷 之间的相互作用力同它们的 电荷量 的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上,同名电荷相斥,异名电荷相吸。这是人类在电磁现象认识上的一次飞跃。

19世纪以前,电与磁的应用尚属凤毛麟角。1800年,意大利物理学家 伏特 发明了伏打电池,它能够 把化学能不断地转变为电能 ,维持单一方向的持续电流。这一发明具有划时代的意义,它为人们深入研究电化学、电磁学以及它们的应用打下了物质基础。以后很快发现了电流的化学效应、热效应以及利用电来照明等。

1820年,丹麦物理学家 奥斯特 通过实验发现了 电流的磁效应 ,在电与磁之间架起了一座桥梁,打开了近代电磁学的突破口。

1825年,法国科学家 安培 提出了著名的 安培环路定理 ( 在稳恒磁场中,磁感应强度B沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流的代数和乘以磁导率。安培环路定理可以由毕奥-萨伐尔定律导出。它反映了稳恒磁场的磁感应线和载流导线相互套连的性质)。他从1820年开始在测量电流的磁效应中,发现了两个载流导线可以互相吸引,又可以互相排斥。这一发现成为研究电学的基本定律,为电动机的发明做了理论上的基础。

1826年,德国人 欧姆 在多年实验基础上,提出了著名的 欧姆定律 :在恒定温度下,导线回路中的电流等于回路中的电动势与电阻值比。欧姆又将这一定律推广于任意一段导线上,并得出导线中的电流等于这一段导线上的电压与电阻之比。

1831年,英国物理学家 法拉第 发现了 电磁感应现象 。当他继续奥斯特的实验时,他坚信 既然电能产生磁,那么磁也能产生电 。他终于发现在磁场中运动的导体会产生感生电动势,并能在闭合导体回路中产生电流。这一发现成为发电机和变压器的基本原理,从而使机械能变为电能成为可能。

1834年俄国人 楞次 提出 感应电流方向的定律 ,即著名的楞次定律。

1838年,画家出身的美国人 莫尔斯 发明了 电报 。1844年,他用电报机从华盛顿向40英里外的巴尔的摩发出电文。

1845年,德国科学家 基尔霍夫 在深入研究了欧姆的工作成果之后,提出了电路的两个基本定律—— 基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL) 。它是集总参数电路(其特点是电路中任意两个端点间的电压和流入任一器件端钮的电流完全确定,与器件的几何尺寸和空间位置无关。与其对应的是分布参数电路)中电压、电流必须服从的规律。

1853年, 汤姆逊 采用电阻、电感和电容的电路模型,分析了 莱顿瓶的放电过程 ,得出电震荡的频率 。

1853年, 亥姆霍兹 提出电路中的 等效发电机定理 (戴维南定理和 诺顿定理 是最常用的电路简化方法。由于戴维南定理和诺顿定理都是将有源二端网络等效为电源支路,所以统称为等效电源定理或等效发电机定理)。由于国际通信需求的增加,1850——1855年,欧洲建成了英国、法国、意大利、土耳其之间的海底电报电缆。电报信号经过远距离的电缆传送,产生了信号的衰减、延迟、失真等现象。1854年 汤姆逊 发表了 电缆传输理论 ,分析了这些现象。1857年 基尔霍夫 考虑到架空传输线与电缆不同,得出了包括自感系数在内的完整的传输线上电压及电流方程式,称之为 电报员方程或基尔霍夫方程 。至此,包括传输线在内的电路理论就基本建立起来了。

1864年英国物理学家 麦克斯韦 总结了当时所发现的种种电磁现象的规律,将它表达为 麦克斯韦方程组 , 预言了电磁波的存在 ,为电路理论奠定了坚实的基础。1887年,德国物理学家 赫兹 经过艰苦的反复实验, 证明麦克斯韦所预言的电磁波确实存在 。

1866年,德国工程师 西门子 发现了 电动机原理 并用在了发电机的改进上。由于点在各方面的应用日益广泛,如照明、电解、电镀、电力拖动等,迫切需要更方便地获取电能,以提高效率、降低成本。1881年,直流高压输电试验成功。但由于直流高压不便于用户直接使用,同年在发明变压器的基础上又实现了远距离交流高压传输。从此,电气化时代开始了。

1876年,美国科学家 贝尔 发明了电话。当时电报已经很发达,贝尔在多路电报通信实验中,萌发了在电报线上通话的设想。在 T.A.沃森 的协助下,经过不懈的努力终于试验成功。经过不断改进,到1878年,他实现了从波士顿到纽约之间200英里的首次长途通话。

1879年,美国人 爱迪生 发明了 碳丝灯泡 。

1912年美国人 W.D. 库利奇 发明了 钨丝灯泡 ,成为最普及的照明用具。电灯的广泛使用,是电能应用的一次大普及,并改变了人们的生活。

1894年,意大利人 马可尼 和俄国的 波波夫 分别发明了 无线电 。没有受过正规大学教育的20岁的马可尼利用赫兹的火花振荡器作为发射器,通过电键的开、闭产生断续的电磁波信号。1895年,他发射的信号传送距离为1km以上,1897年发射的信号可在20km之外接收到,从此开始了无线电通信的时代。

1825年英国人 贝尔德 首先发明 电视 。几乎在同时,美国无线电公司的工程师 兹沃雷金 发明了 电视显像管 。1933年,他利用真空二极管、真空三极管和显像管,最早发明了电视机。1936年,黑白电视机正式问世了。

近代电路理论的主要特点之一是 吉尔曼 将 图论 引入电路理论之中。它为应用计算机进行电路分析和集成电路布线与板图设计等研究提供了有力的工具。特点之二是出现大量新的电路元件、有源器件,如使用低电压的MOS电路,摒弃电感元件的电路,进一步摒弃电阻的开关电容电路等。当前,有源电路的综合设计正在迅速发展之中。特点之三是在电路分析和设计中应用计算机后,使得对电路的优化设计和故障诊断成为可能,大大提高了电子产品的质量并降低了成本。

⑧ 基本电路理论的目录

第一章电路基本定律和简单电阻电路
§1-l引言
§1-l-2欧姆定律
§1-3基尔霍夫定律
基尔霍夫定律是德国物理学家基尔霍夫提出的。基尔霍夫定律是电路理论中最基本也是最重要的定律之一。它概括了电路中电流和电压分别遵循的基本规律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。基尔霍夫定律Kirchhoff laws是电路中电压和电流所遵循的基本规律,是分析和计算较为复杂电路的基础,1845年由德国物理学家G.R.基尔霍夫(Gustav Robert Kirchhoff,1824~1887)提出。它既可以用于直流电路的分析,也可以用于交流电路的分析,还可以用于含有电子元件的非线性电路的分析。运用基尔霍夫定律进行电路分析时,仅与电路的连接方式有关,而与构成该电路的元器件具有什么样的性质无关。基尔霍夫定律包括电流定律(KCL)和电压定律(KVL)。前者应用于电路中的节点而后者应用于电路中的回路。
基尔霍夫定律是求解复杂电路的电学基本定律。从19世纪40年代,由于电气技术发展的十分迅速,电路变得愈来愈复杂。某些电路呈现出网络形状,并且网络中还存在一些由3条或3条以上支路形成的交点(节点)。这种复杂电路不是串、并联电路的公式所能解决的,刚从德国哥尼斯堡大学毕业,年仅21岁的基尔霍夫在他的第1篇论文中提出了适用于这种网络状电路计算的两个定律,即著名的基尔霍夫定律。该定律能够迅速地求解任何复杂电路,从而成功地解决了这个阻碍电气技术发展的难题。基尔霍夫定律建立在电荷守恒定律、欧姆定律及电压环路定理的基础之上,在稳恒电流条件下严格成立。当基尔霍夫第一、第二方程组联合使用时,可正确迅速地计算出电路中各支路的电流值。由于似稳电流(低频交流电)具有的电磁波长远大于电路的尺度,所以它在电路中每一瞬间的电流与电压均能在足够好的程度上满足基尔霍夫定律。因此,基尔霍夫定律的应用范围亦可扩展到交流电路之中。
§1-4电阻和电源的组合
§1-5用△-Y变换来简化电路
§1-6电源变换
§1-7电压和电流分配
习题
第二章电阻电路的一般分析
§2-l节点分析
节点分析法(node-analysis method)的基本指导思想是用未知的节点电压代替未知的支路电压来建立电路方程,以减少联立方程的元数。节点电压是指独立节点对非独立节点的电压。应用基尔霍夫电流定律建立节点电流方程,然后用节点电压去表示支路电流,最后求解节点电压的方法叫节点分析法。
1、选定参考节点(节点③)和各支路电流的参考方向,
并对独立节点(节点①和节点②)分别应用基尔霍夫电流定律列出电流方程。
2、根据基尔霍夫电压定律和欧姆定律,建立用节点电压和已知的支路电阻来表
示支路电流的支路方程。
3、将支路方程和节点方程相结合,消去节点方程中的支路电流变量,代之以节点电压变量,经移项整理后,获得以两节点电压为变量的节点方程。
§2-2网孔分析
根据基尔霍夫定律:可以提供独立的KVL方程的回路数为b-n+1个,
网孔只是其中的一组。
网孔电流:沿每个网孔边界自行流动的闭合的假想电流。 一般对于M个网孔,自电阻×本网孔电流 + ∑(±)互电阻×相邻
网孔电流 + ∑本网孔中电压升
1、选网孔电流为变量,并标出变量方向(常设为顺时针方向)
2、按照规律,采用观察法列网孔方程
3、解网孔电流
4、由网孔电流计算其它待求量
§2-3钱性和叠加
§2-4戴维南定理和诺顿定理
戴维南定理(Thevenin's theorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。
戴维南定理(又译为戴维宁定理)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端,就其外部型态而言,在电性上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。在单频交流系统中,此定理不仅只适用于电阻,也适用于广义的阻抗。
对于含独立源,线性电阻和线性受控源的单口网络(二端网络),都可以用一个电压源与电阻相串联的单口网络(二端网络)来等效,这个电压源的电压,就是此单口网络(二端网络)的开路电压,这个串联电阻就是从此单口网络(二端网络)两端看进去,当网络内部所有独立源均置零以后的等效电阻。
uoc 称为开路电压。Ro称为戴维南等效电阻。在电子电路中,当单口网络视为电源时,常称此电阻为输出电阻,常用Ro表示;当单口网络视为负载时,则称之为输入电阻,并常用Ri表示。电压源uoc和电阻Ro的串联单口网络,常称为戴维南等效电路。
当单口网络的端口电压和电流采用关联参考方向时,其端口电压电流关系方程可表为:U=R0i+uoc
§2-5直流情况下的最大功率传输
最大功率传输(maximum power tramsfer,theorem on)是关于使含源线性阻抗单口网络向可变电阻负载传输最大功率的条件。定理满足时,称为最大功率匹配,此时负载电阻(分量)RL获得的最大功率为:Pmax=Uoc^2/4R0。
最大功率传输是关于负载与电源相匹配时,负载能获得最大功率的定理。定理分为直流电路和交流电路两部分,内容如下所示。 工作于正弦稳态的单口网络向一个负载ZL=RL+jXL供电,如果该单口网络可用戴维宁(也叫戴维南)等效电路(其中Zo=Ro+jXo,Ro>0)代替,则在负载阻抗等于含源单口网络输出阻抗的共轭复数(即电阻成份相等,电抗成份只数值相等而符号相反)时,负载可以获得最大平均功率Pmax=Uoc^2/4R0。这种匹配称为共轭匹配,在通信和电子设备的设计中,常常要求满足共轭匹配,以便使负载得到最大功率。
满足最大功率匹配条件(RL=Ro>0)时,Ro吸收功率与RL吸收功率相等,对电压源uoc而言,功率传输效率为h=50%。对单口网络N中的独立源而言,效率可能更低。电力系统要求尽可能提高效率,以便更充分地利用能源,不能采用功率匹配条件。但是在测量、电子与信息工程中,常常着眼于从微弱信号中获得最大功率,而不看重效率的高低。
习题
第三章含运算放大器的电阻电路
§3-1运算放大器
运算放大器(简称“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,大部分的运放是以单芯片的形式存在。运放的种类繁多,广泛应用于电子行业当中。
运算放大器最早被设计出来的目的是将电压类比成数字,用来进行加、减、乘、除的运算,同时也成为实现模拟计算机(analog computer)的基本建构方块。然而,理想运算放大器的在电路系统设计上的用途却远超过加减乘除的计算。今日的运算放大器,无论是使用晶体管(transistor)或真空管(vacuum tube)、分立式(discrete)元件或集成电路(integrated circuits)元件,运算放大器的效能都已经逐渐接近理想运算放大器的要求。早期的运算放大器是使用真空管设计,现在则多半是集成电路式的元件。但是如果系统对于放大器的需求超出集成电路放大器的需求时,常常会利用分立式元件来实现这些特殊规格的运算放大器。
1960年代晚期,仙童半导体(Fairchild Semiconctor)推出了第一个被广泛使用的集成电路运算放大器,型号为μA709,设计者则是鲍伯·韦勒(Bob Widlar)。但是709很快地被随后而来的新产品μA741取代,741有着更好的性能,更为稳定,也更容易使用。741运算放大器成了微电子工业发展历史上一个独一无二的象征,历经了数十年的演进仍然没有被取代,很多集成电路的制造商至今仍然在生产741。直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。
§3-2含运放电阻电路
§3-3电压跟随器(隔离器)
§3-4模拟加法和减法
习题
第四章电感和电容
§4-l电感器
§4-2电容器
§413电感和电容的组合
§4-4*对偶性
§4-5简单电容运放电路
习题
第五章一阶电路
§5-l单位阶跃激励函数
§5-2无源RL电路
§5-3无源Rc电路
§5-4有源RL电路
§5-5有源RC电路
习题
第六章二阶电路
§6-l无源RLC并联电路
§6-2无源RLC串联电路
§6-3RLC电路的全响应
习题
第七章正弦量和相量
§7-1-正弦量的特征m
§7-2正弦激励函数的强制响应小
§7-3电流与电压的有效值
§7-4复激励函数
§7-5相量
§7-6R、L、C元件上的相量关系
§7-7阻抗
§7-8导纳
习题
第八章正弦电路的稳态分析
§8-l节点、网孔和回路分析
§8-2叠加定理、电源变换和戴维南定理
§8-3相量图
习题
第九章功率与功率因数
§9-1瞬时功率
§9-2平均功率
§9-3视在功率与功率因数
§9-4复功率
§9-5交流情况下的最大功率传输
习题
第十章频率响应
§10-I并联谐振
§10-2串联谐撅
§10-3其它谐振电路
习题
第十一章磁耦合电路
§11-1互感
§11-2线性变压器
§ll-3理想变压器
习题
第十二章三相电路
§12一l三相电压
§12-2三相电路的Y-Y-联接
§12-3三角形(△)联接
§12-4功率表的使用
§12-5三相系统的功率测量
习题
第十三章二端口网络
§13-1导纳参数
§13-2二端口等效网络
§13-3阻抗参数
§13-1混合参数
§13-5传输参数
§13-6二端口网络的联接
§13-7*回转器
§13-8*负阻抗变换器(NIC)
习题
第十四章傅里叶波形分析方法
§14-l傅里叶三角级数
§14-2傅里叶级数的指数形式
§14-3波形对称性的应甩
§14-4线频谱
§14-5波形综合
§14-6有效值和平均功率
§14-7傅里叶级数在电路分析中的应用
§14-8傅里叶变换的定义
习题
第十五章拉普拉斯变换法
§15-l拉氏变换定义
§15-2单位冲激函数
§15-3*在时域中的卷积与电路时域响应
§15-4一些简单时间函数的拉氏变换
§15-5拉氏变换的几个基本定理
§15-6部分分式法
§15-7求全响应
§15-8传递函数(网络函数)H(s)
§15-9复频率平面
习题
第十六章网络图论
§16-1定义和符号
§16-2关联矩阵和基尔霍夫电流定律
§16-3回路矩阵和基尔霍夫电压定律
§16-4图的各矩阵间的相互关系
§16-5特勒根定理
习题
第十七章网络矩阵方程
§17-1直接分析法
§17-2节点分析法
§17-3回路分析法
§17-4含受控电源的网络分析
§17-5状态变量和标准状态方程
§17-6标准型状态方程的列写
习题
第十八章简单非线性电路
§18-1非线性元件
§18-2简单非线性电阻电路
§18-3小信号分析法
§18-4将电路分解为线性部分和非线性部分
§18-5伏安特性的组合
§18-6牛顿一拉夫逊法
§18-7一般非线性电阻电路
§18-8状态空闯分析:相平面
§18-9相迹的特性!
习题
第十九章*电路设计
§19-I设计过程
§19-2简单的无源和有源低通滤波器
§19-3带通电路
第二十章*开关电容电路
§20-1MOS开关
§20-2模拟运算
§20-3一阶滤波器
第二十一章分布参数电路
§2l-1引言
§21-2传输线分布参数电路的交流稳态运算
§21-3无损耗分布参数电路
§21-4有损耗传输线的两种特定情况
§21-5有限长传输线的分布参数电路
§21-6有限长无损耗传输线
§21-7终端接任意阻抗的无损耗传输线
习题
附录部分习题答案
参考书目
注:打星号(*)的章节在教学时可以选用。

⑨ 开尔文电路原理

开尔文电桥又称“双臂电桥”,是一种利用电位比较的方法进行测量的仪器,具有很高的灵敏度和准确性,在电测技术和自动控制测量应用极为广泛。而开尔文电桥又是惠斯通电桥的变形,在测量小阻值电阻(通常《1欧)时具有相当高的准确度,适于测量10-5~10Ω低阻值电阻。

1862年英国的W.汤姆孙在研究利用单比电桥测量小电阻遇到困难时,发现引起测量产生较大误差的原因是引线电阻和连接点处的接触电阻。这些电阻值可能远大于被测电阻值。因此,他提出了如图1所示的桥路,被称为汤姆孙电桥。后因他晋封为开尔文勋爵,故又称开尔文电桥。图中R3、R4分别是标准电阻与被测小电阻器,R1、R2是形成所需比值的两桥臂。r是跨线电阻(包括R3、R4两电阻器间的引线电阻、接触电阻及内部连线电阻)。

为获得准确的测量结果,消除r的影响,须将r按R1和R2的同样比例分配给R3和R4,R姈和R娦就是为此目的而设置的。在电桥调平衡时,应保直流电桥持R姈、R娦的比值一直与R1R2的比值相等。由于这一特点,这种桥路又称双比电桥。所测电阻值可低到毫欧级或更小。根据双比电桥原理又发展出史密斯电桥,三平衡电桥和四跨线电桥等,使得采用桥路测小电阻的理论与实践臻于完善。

开尔文电桥的工作原理

双臂电桥正是把四端引线法和电桥的平衡比较法结合起来精密测量低电阻的一种电桥。

把四端接法的低电阻(如待测低电阻和比较臂低电阻)接入原单臂电桥,如图9所示。这样就多了一臂,最后就演变成为图10的双臂电桥的电原理图,从原理图中易见:为了进一步考虑有关引线电阻和接触电阻的影响,而接入电阻R3和R4,而且它们的值务必大于10Ω。且为考虑电桥平衡时R4/R2与R3/R1的差别对测量结果的影响,使分流电流I3值较小,我们就用小于0.001Ω的粗导线R来连接电阻Rn和Rx。为增加灵敏度,加接一放大电路,使不平衡电流I0,通过放大后再由检流计指示。

当电桥达到平衡时,通过检流计中的电流,I0=0说明C,D两点电位相等,设计时R1、R2、R3、R4均远大于附加引线和接触电阻,根据基尔霍夫第二定律,可以得出下列方程组:

⑩ 物理 电路理论 割集

割集是支路的集合,是用一个封闭面把图分成两部分后,穿过这个封闭面的支路的集合,如果移除其中的任一条支路,图又将恢复连通。
割集至少包含一条树支,也可以多于一条树支,只包含一条树支的割集叫单树支割集,这个概念很重要,电路分析里就用它。

阅读全文

与电路理论史相关的资料

热点内容
boost电路原理 浏览:225
飞涂外墙防水胶怎么样 浏览:8
如何查询百邦维修进度 浏览:742
广东gf防水材料多少钱一公斤 浏览:348
胶州仿古家具市场在哪里 浏览:249
汽车水泵保修期限 浏览:101
赣州市哪里回收旧家电 浏览:293
深圳市邸高家居 浏览:539
房屋漏水物业如何维修 浏览:54
前锋热水器泸州维修点 浏览:768
电动车维修技巧免费视频教程全集 浏览:449
电影里的智能家居 浏览:277
塔吊维修怎么写 浏览:373
成都家居用品公司 浏览:927
多久压电路 浏览:328
济南历城区家电维修地址 浏览:429
买华为平板如何注意买到翻新机 浏览:162
switch如何验证是不是翻新 浏览:275
济南lg空调售后维修电话 浏览:286
小米虹口维修点 浏览:199