1. 4-20ma模拟信号两线制怎么接线
4-20ma模拟信号两线制接线如图:
(1)电流模电路扩展阅读:
4-20ma模拟信号二线制方案需要考虑的主要问题:确定所用接收器的数量,当有多个接收器时,它将要求变送器拥有一个较低的工作电源电压。另外一种考虑是降低回路电流在接收端的压降。
1、电路环中的接收器的数量:更多的接收器将要求变送器有较低的工作电压。
2、变送器所必需的工作电压要有一定的余量。
3、决定传感器的激励方法是电压还是电流。
2. 请问谁有低频电子线路第2版张肃文主编的习题答案电子版
=========================================
还是你留下个邮箱
把分给我
我发给你
=========================================
还可以留下个QQ,我在线帮你解决
=========================================
3. 功率放大器的使用技巧
功率放大器在某种程度上主宰着整个系统能否提供良好的音质输出。
对于很多人来说,对放大器并不是十分的了解,不清楚在功放音箱中,都需要哪些的配件进行配置,才能将功放的效果播放到一个最佳的状态。
第一种:就是在喇叭下面装个电阻做电流取样,实际上反馈回去的还是电压信号,是模拟的电流反馈,做的人最多,但是这个电路有缺陷的,有2个方面的原因:
1、是他的输出增益会随着阻抗的变化而变化。结果使加在喇叭2端的不是恒压了,好象这样可以使加到喇叭上的功率恒定。
由于扬声器的声压特性曲线是在恒压输出下测试的,所以单纯的这种电路并不好声,听感不佳,好玩而已,不过有改进型的电路,以电压负反馈为主,加适量的这种类型的电流负反馈,倒是可以做出不错的声音,但此时电流负反馈的作用是改变功放的阻尼系数,对幅频特性影响不大。
2、是取样点在喇叭的下面,喇叭是个电感,电流流过电感其相位会变化,低频还好,高频可以移相90度,相位特性极差。
第二种:负阻放大器,除了在一些特别的场合,第一个用于音响上并取得成功的是YAMAHA,其主要的作用是对低频的延伸有很好的改善作用,但是对200Hz以上的频率却会起到劣化音质的效果,所以一般是用在超低频有源音箱上。
实际上,这种电路是和音箱搭配使用的,单独没有什么实际使用的意义。其工作原理是:如果音箱是一个刚体,那么加上一个管子,就可以变成一个理想的霍尔莫滋共鸣箱,那么不管这箱子大小如何,管子的粗细怎样,只要符合霍尔莫滋共振计算公式。哪怕20Hz的谐振点也可以做的到,箱子的大小,只是效率高低而已,由于音箱上有喇叭的存在,喇叭在发声的时候是在运动的,音箱就不是一个刚体,那么箱子就不会产生霍尔莫滋共鸣。
因此,如果在发声的时候喇叭的振膜是静止不动的。那么,箱子就接近刚体,就可以满足霍尔莫滋共振的条件,可以任意的设计这个箱子的谐振点。发声的时候让喇叭不动的工作就是负阻功放的任务了。负阻功放的工作原理是当喇叭在低频段工作的时候,其阻抗特性急剧变化,放大电路通过电流取样将这种变化取出来反馈给功放,使得功放以电流的形式进行控制喇叭,如果对放大电路进行等效分析,可以发现功放的内阻在计算上成负阻特性。
在动态放大的时候使得喇叭加放大器的内阻接近于0。结果这种电路使得在喇叭不管朝哪个方向都受到很强的阻尼。只要发声以结束,喇叭就不动了,箱子也就变刚体了。
第三种:电流模反馈放大电路,这个才是实用的电流放大电路,也是真正的电流型负反馈,其反馈的信号是电流,不是电压,就是说在负反馈端不是加上,而是加入,有电流流入的。这种电路最早是在视频传输,或则仪器设备象示波器什么的上用的很多。
由于是低阻负电流反馈输入这种电路的高频特性极佳,容性负载的驱动能力超强,只要进过改进,发现做功率放大器很是不错,可以弥补电压型放大器的一些先天不足,象开环频响低,闭环的瞬态频响失真,极弱的容性负载驱动能力。缺点是这种电路的开环增益比较低,闭环后的失真会比电压型放大器高一个数量级。不过,做的好总失真也不会过0.01%。
4. 使功率放大器达到最佳状态的几种电路设计
实践上,这种电路是和音箱搭配运用的,单独没有什么实践运用的意义。其工作原理是:假如音箱是一个刚体,那么加上一个管子,就能够变成一个理想的霍尔莫滋共鸣箱,那么不论这箱子大小如何,管子的粗细怎样,只需契合霍尔莫滋共振计算公式。哪怕20Hz的谐振点也能够做的到,箱子的大小,只是效率上下而已,由于音箱上有喇叭的存在,喇叭在发声的时分是在运动的,音箱就不是一个刚体,那么箱子就不会产生霍尔莫滋共鸣。因而,假如在发声的时分喇叭的振膜是静止不动的。那么,箱子就接近刚体,就能够满足霍尔莫滋共振的条件,能够恣意的设计这个箱子的谐振点。 第二种:就是在喇叭下面装个电阻做电流取样,实践上反应回去的还是电压信号,是模仿的电流反应,做的人最多,但是这个电路有缺陷的,有2个方面的缘由, 1、输出增益会随着阻抗的变化而变化。结果使加在喇叭两端的不是恒压了,好象这样能够使加到喇叭上的功率恒定。但是不要遗忘,扬声器的声压特性曲线是在恒压输出下TEST的啊,所以单纯的这种电路并不好声,听感不佳,好玩而已,不过有改良型的电路,以电压负反应为主,加适量的这品种型的电流负反应,到是能够做出不错的声音,但此时电流负反应的作用是改动功放的阻尼系数,对幅频特性影响不大。 2、是取样点在喇叭的下面,喇叭是个电感,电流流过电感其相应会有变化,低频还好,高频能够移相90度,相位特性极差。 第三种:电流模反应放大电路,这个才是适用的电放逐大电路,也是真正的电流型负反应,其反应的信号是电流,不是电压,就是说在负反应端不是加上,而是参加,有电流流入的。这种电路最早是在视频传输,或则仪器设备象示波器什么的上用的很多。 由于是低阻负电流反应输入这种电路的高频特性极佳,容性负载的驱动才能超强,只需经过改良,发现做功率放大器很是不错,能够补偿电压型放大器的一些先天缺乏,象开环频响低,闭环的瞬态频响失真,极弱的容性负载驱动才能。缺陷是这种电路的开环增益比拟低,闭环后的失真会比电压型放大器高一个数量级。 以上这三种电路设计,就是小编为大家总结的能使功率放大器达到最佳状态的的电路设计,其中有各自的特点以及缺陷,大家可以依据自身情况,合理的运用。
5. 模拟电子线路基础的内容简介
本书在阐述模拟电子线路基本理论和技术的基础上,融人了大量90年代初专模拟集成电子学属的新成果。全书分为9章:半导体器件,模拟集成基本放大电路及其分析方法,放大电路的频率特性,负反馈放大电路,模拟集成电路,模拟集成电路的应用,振荡电路,直流电源,电流模电路。
书中通过对各种半导体分立器件、集成组件特性及其电路的分析,阐述了模拟电子线路的基本概念、基本电路、基本原理、基本应用方法和基本分析方法,并介绍了VMOSFET、IGBJT等新功率器件及其应用电路;介绍了集成开关电容电路、集成开关稳压电路、电流模电路等新理论、新技术、新集成组件及其应用。书中附有一定数量的例题、思考题与习题,其中计算习题附有参考答案。
本书可作为高等学校理工科电子、通信、自动控制、计算机、电力等专业本科教材,亦可作为相应专业专科教材或教学参考书,还可供相关工程技术人员参考。
6. 如何配置功率放大器达到最佳效果
功率放大器在某种程度上主宰着整个系统能否提供良好的音质输出。 对于很多朋友来说,对放大器并不是十分的了解,不清楚在功放音箱中,都需要哪些的配件进行配置,才能将功放的效果播放到一个最佳的状态? 第一种:就是在喇叭下面装个电阻做电流取样,实际上反馈回去的还是电压信号,是模拟的电流反馈,做的人最多,但是这个电路有缺陷的,有2个方面的原因, 1、是他的输出增益会随着阻抗的变化而变化。结果使加在喇叭2端的不是恒压了,好象这样可以使加到喇叭上的功率恒定。 但是不要忘记,扬声器的声压特性曲线是在恒压输出下TEST的啊,所以单纯的这种电路并不好声,听感不佳,好玩而已,不过有改进型的电路,以电压负反馈为主,加适量的这种类型的电流负反馈,倒是可以做出不错的声音,但此时电流负反馈的作用是改变功放的阻尼系数,对幅频特性影响不大。 2、是取样点在喇叭的下面,喇叭是个电感,电流流过电感其相位会变化,低频还好,高频可以移相90度,相位特性极差。 第二种:负阻放大器,除了在一些特别的场合,第一个用于音响上并取得成功的是YAMAHA,其主要的作用是对低频的延伸有很好的改善作用,但是对200Hz以上的频率却会起到劣化音质的效果,所以一般是用在超低频有源音箱上。 实际上,这种电路是和音箱搭配使用的,单独没有什么实际使用的意义。其工作原理是:如果音箱是一个刚体,那么加上一个管子,就可以变成一个理想的霍尔莫滋共鸣箱,那么不管这箱子大小如何,管子的粗细怎样,只要符合霍尔莫滋共振计算公式。哪怕20Hz的谐振点也可以做的到,箱子的大小,只是效率高低而已,由于音箱上有喇叭的存在,喇叭在发声的时候是在运动的,音箱就不是一个刚体,那么箱子就不会产生霍尔莫滋共鸣。 因此,如果在发声的时候喇叭的振膜是静止不动的。那么,箱子就接近刚体,就可以满足霍尔莫滋共振的条件,可以任意的设计这个箱子的谐振点。发声的时候让喇叭不动的工作就是负阻功放的任务了。负阻功放的工作原理是当喇叭在低频段工作的时候,其阻抗特性急剧变化,放大电路通过电流取样将这种变化取出来反馈给功放,使得功放以电流的形式进行控制喇叭,如果对放大电路进行等效分析,可以发现功放的内阻在计算上成负阻特性。 在动态放大的时候使得喇叭加放大器的内阻接近于0。结果这种电路使得在喇叭不管朝哪个方向都受到很强的阻尼。只要发声以结束,喇叭就不动了,箱子也就变刚体了。 第三种:电流模反馈放大电路,这个才是实用的电流放大电路,也是真正的电流型负反馈,其反馈的信号是电流,不是电压,就是说在负反馈端不是加上,而是加入,有电流流入的。这种电路最早是在视频传输,或则仪器设备象示波器什么的上用的很多。 由于是低阻负电流反馈输入这种电路的高频特性极佳,容性负载的驱动能力超强,只要进过改进,发现做功率放大器很是不错,可以弥补电压型放大器的一些先天不足,象开环频响低,闭环的瞬态频响失真,极弱的容性负载驱动能力。缺点是这种电路的开环增益比较低,闭环后的失真会比电压型放大器高一个数量级。 不过,做的好总失真也不会过0.01%。
7. 高频电子线路有那些应用,或者说学了高频电路之后能做什么呢
高频电子线路是电子与通信技术专业的一门重要专业基础课程,
应用:高频小信号放大器,高频功率放大器,正弦波振荡器,调幅、检波与混频,角度调制与解调以及反馈控制电路。
8. 高频电子线路具体要学什么
本课程内容包括非谐振功放、谐振功放、正弦振荡、模拟相乘器、电流模电路与电流模相乘器、混频器、振幅调制与检波、角度调制与解调、反馈控制系统等。除反馈控制单元外各单元电路均是通信系统的单元电路,并贯彻以集成电路为主,适应现代通信系统的实际情况,模拟信号的调制原理甚至电路完全可以推广到数字调制中,这就是举一反三。这门课程涉及的基本理论、基本知识和基本方法对培养起着重要作用,是不可缺少的。
教学要求:
1.理解变压器耦合甲类单管与乙类推挽功放的原理与特点;掌握OTL(或OCL)电路及集成功放的工作原理,工程估算以及电路实际调试方法;掌握常用传输线变压器工作原理和宽频带高频功率合成电路与特点。
2.掌握丙类谐振功放工作原理及工作状态,理解馈电电路类型及特点,理解匹配网络设计方法,了解高效功放的工作原理。了解倍频器的电路与特点。
3.掌握正弦波振荡器工作原理,掌握对各类型振荡器判断是否可能振荡的条件,掌握利用起振条件确定电路参数的方法,了解振荡器设计的基本原则,理解影响频率稳定的因素及提高频率稳定度的措施。了解负阻振荡和开关电容振荡器。
4.掌握各种电压模相乘器的基本电路、特点、工作原理,灵活掌握用各种相乘器电路实现调幅、混频和同步检波的方法。
5.对电流模电路要掌握TL回路原理、电流模放大器工作原理,理解电流模相乘器基本特点、工作原理及其应用。
6.掌握混频、振幅调制、包络检波的基本特性、基本电路及基本工作原理,理解同步检波类型、原理,能熟练掌握用各相乘器实现混频、调幅、检波功能。
7.掌握角度调制基本特性、变容管直接调频、调相和间接调频电路的特点及工作原理,了解扩大频偏方法,理解斜率鉴频,了解互感耦合相位鉴频,比例鉴频电路特点和工作原理,了解用相量法确定鉴频特性曲线的方法。掌握正交鉴频器、鉴相器的框图、电路及工作原理。
8.了解自动频率和自动增益控制工作原理,掌握自动相位控制框图、工作原理、基本方程及其基本分析方法与锁相基本概念,理解锁相环在频率变换和频率合成中的应用。
教学进度:
教学内容
讲授参考学时
自学学时
备注
绪 论
1
2
第一章 非谐振功放概述,变压器耦合甲类、乙类功放、OTL电路、集成功放、 宽带高频功放 7
16
功率管散热自学
第二章 谐振功放概述、丙类谐振功放原理、性能分析、馈电电路、匹配网络倍频器 6
13
高效率功放自学
第三章 正弦波振荡概述、正弦振荡工作原理、LC正弦振荡器及频率稳定度、晶体振荡、RC振荡 10
20
开关电容、负阻振
荡、寄生振荡自学
第四章 相乘器和混频器
电压模相乘器各电路原理及分析方法、电流模技术、TL回路、电流模放大器、电流模相乘器特点,混频概述、工作原理、及实现混频电路 11
23
参量混频自学
第五章 振幅调制与解调
振幅调制的基本特性、用相乘器实现调制的电路、条幅解调的基本概念、二极管包络检波器的工作原理、特点、性能指标、以及同步检波的概念 8
20
第六章 角度调制与解调
角度调制基本概念及基本特性、直接调频、调相、间接调频电路特点及工作原理,扩大调频波频偏方法、鉴频方法、鉴频电路基本原理 11
25
限幅器自学
第七章 锁相环路概述,框图、原理、相位模式、环路方程、环路线性化分析条件及及其基本应用 4
6
其它自学
合计
58
125
自行安排好学习内容