㈠ 请大神看看增压泵这个电路图。
水泵是单相还是三相的,图中有三种接线,左边是单相接线的,右边两个是三相的。
㈡ 升压电路的原理
升压电路又叫“电源泵”,它是基于开关电路和倍压整流电路而设计,体积小,适用于给高电压低电流器件供电。现在很多带液晶显示的电子设备中都用到了这样的升压电路。
㈢ 升压器原理图
升压器原理图如下:
试验变压器(全称交专流高压试验变压器)又名升压器,它是发电站、供配电系属统及科研单位等广大用户的基本试验设备。用于对各种电器产品、电气设备、绝缘材料等进行规定电压下的绝缘强度试验,考核产品的绝缘水平,发现被试品的绝缘缺陷,衡量承受过电压的能力。
(3)升压泵电路扩展阅读:
试验变压器高压尾和测量线圈尾端在内部联接,使用时第I级高压尾连同外壳必须良好接地,第II级和第III级连同外壳必须固定电位,因此第II级和第III级外壳电位是U和2U,必须置放在绝缘支架上,并与人保持足够安全距离。
在串级高压试验时,应特别注意检查II级、III级的接线正确性,接反会造成输出电压为零,可用分压器直接监测高压输出。还应检查绝缘支架的电气强度是否满足电压要求。
㈣ 有关于电荷泵倍升电路设计,有没有详尽的资料啊,我知道伸手党很不好但是没办法啊 快交了
现在的电荷泵升压电路都是用现成的器件,外围一般只需接几只电容即可,极少有人回还用分立元件自答己搭。如果你一定要自己练习搭电荷泵升压电路,可以看那些电荷泵升压器件的数据手册,里边会有其内部原理电路图,但不是细化到元件级。下图是TI的TPS60110数据手册中的内部原理框图,里边给出了各功能模块的连接关系以及与外围电容的连接。
㈤ 升压式电荷泵LED驱动电路主要应用在什么场合
LED在可携式产品中背光源的地位已经不可动摇,即便是在大尺寸LCD的背光源当中,LED也开始挑战CCFL(冷阴极萤光灯)的主流地位;而在照明领域,LED作为半导体照明最关键的部件,更是因为顶着节能、环保、长寿命、免维护等诸多光环而受到市场的追捧。驱动电路是LED(发光二极管)产品的重要组成部分,无论在照明、背光源还是显示板领域,驱动电路技术架构的选择都应与具体的应用相匹配。 LED的发光原理是在它两端加上正向电压,使半导体中的少数载流子和多数载流子发生复合,放出过剩能量,从而引起光子的发射。LED驱动电路的主要功能是将交流电压转换为恒流电源,同时按照LED器件的要求完成与LED的电压和电流的匹配。LED驱动电路除了要满足安全要求外,另外的基本功能应有两个方面: 一是尽可能保持恒流特性,尤其在电源电压发生±15%的变动时,仍应能保持输出电流在±10%的范围内变动。用LED作为显示器或其他照明设备或背光源时,需要对其进行恒流驱动,主要原因是: 1、避免驱动电流超出最大额定值,影响其可靠性。 2、获得预期的亮度要求,并保证各个LED亮度、色度的一致性。 二是驱动电路应保持较低的自身功耗,这样才能使LED的系统效率保持在较高水准。
升压是LED驱动电路的重要任务,而电感升压和电荷泵升压是两种不同的拓扑模式。“由于LED是由电流驱动的,而电感在进行电流转换时效率最高,因此电感升压方式最大的优点就是效率高,如果设计得当可以超过90%;不过它的缺点也同样明显,就是电磁干扰很强,对手机等通信产品的系统要求就非常高。随着电荷泵的出现,目前大多数手机都不再采用电感升压方式。当然,采用电荷泵的升压方式其效率将低于电感升压。 无论在照明应用还是背光应用领域,提高驱动电路的转换效率都是产品设计者必须面对的问题。提高转换效率,不仅有利于可携式产品延长待机时间,同时也是解决LED散热问题的重要手段。在照明领域,由于使用大功率LED,因此提高转换效率就显得尤为重要。
㈥ 怎样设计一个升压电路并且具有很强的带负载能力的电路
首先
选择一个升压芯片
或者说稳压芯片7805之类的
其次在后端加一个
射极
跟随器
,即一个共集电极的三极管电路
射极输出,可以增加
驱动能力
而不改变
电压变化
。
㈦ 电荷泵升压电路最高的效率是多少
典型倍压电荷泵效率(上图)
电荷泵升压电路的理论效率是100%,实际上由于芯片本身的耗电及电容充放电损耗,效率最高在90%附近。
当负载较轻时,芯片的静态功耗占主要因素;
当负载较重时,电容充放电损耗占主要因素。
电荷泵电路简单,效率较高,电磁兼容性好,有的还自带稳压功能;
电荷泵电路一般纹波较大,输出电流较小,一般在300mA以下。
㈧ 求升压水泵电路,和需要什么东西。
压力感应器控制电机的停转
㈨ 升压泵的原理是什么
给水泵应该使用的是离心泵。离心泵就是把电能转换为机械能,通过离心叶轮旋转,来提升液体的压力。
在离心泵启动前,泵壳内灌满被输送的液体;启动后,启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。
㈩ 升压电路升压问题
升电流,只是提升驱动能力。和前几的处理和能力有关。升电压可以用线绕变压器或是555组成泵压电路。