导航:首页 > 电器电路 > 电路原理不会

电路原理不会

发布时间:2021-01-16 19:27:58

Ⅰ 怎么看简单的电路原理图。

电路图组成:

电路图主要由元件符号、连线、结点、注释四大部分组成。

1、元件符号表示实际电路中的元件,它的形状与实际的元件不一定相似,甚至完全不一样。但是它一般都表示出了元件的特点,而且引脚的数目都和实际元件保持一致。

2、连线表示的是实际电路中的导线,在原理图中虽然是一根线,但在常用的印刷电路板中往往不是线而是各种形状的铜箔块,就像收音机原理图中的许多连线在印刷电路板图中并不一定都是线形的,也可以是一定形状的铜膜。

3、结点表示几个元件引脚或几条导线之间相互的连接关系。所有和结点相连的元件引脚、导线,不论数目多少,都是导通的。

4、注释在电路图中是十分重要的,电路图中所有的文字都可以归入注释—类。细看以上各图就会发现,在电路图的各个地方都有注释存在,它们被用来说明元件的型号、名称等等。

学会看电路图,需要先了解一下概念:

(1)首先是要知道几个定律:基尔霍夫定律(一切电路的基础)、安培定律、楞次定律;

(2)其次是要知道几个基本电路:RC电路、RL电路、LC电路、等效电路、并联电路、串联电路、门电路、驱动电路;

(3)第三是要知道几个定义:电动势、击穿、反向击穿、电流源、电压源、负载、电阻值、电压值、电流值、电感值、电容值、电场、电场值、感应电动势、电压值、功率、功率值、额定功率、额定电压、额定电流、导电率、电耦、耦合、电磁感应、电磁场、限压、限流、电阻串并联、电容串并联、电源串并联、交流电源、直流电源、稳压电源、栅极、漏极、源极、基极、集电极、发射极、与门、或门、非门、与非门、与或门、或非门、级联;

(4)第四要知道几个基本原器件:电容、电阻、线圈、二极管、三极管、场效应管、电桥、稳压管、保险丝、晶振、跳线、开关、开关电源;

当了解这么概念后,再理论与实践结合,买一些元器件,自己焊接,就会对电路图理解更深刻。

(1)电路原理不会扩展阅读:

识图

单元电路是指某一级控制器电路,或某一级放大器电路,或某一个振荡器电路、变频器电路等,它是能够完成某一电路功能的最小电路单位。从广义角度上讲,一个集成电路的应用电路也是一个单元电路 。

单元电路图是学习整机电子电路工作原理过程中,首先遇到具有完整功能的电路图,这一电路图概念的提出完全是为了方便电路工作原理分析之需要。

功能

单元电路图具有下列一些功能:

①单元电路图主要用来讲述电路的工作原理。

②它能够完整地表达某一级电路的结构和工作原理,有时还全部标出电路中各元器件的参数,如标称阻值和三极管型号等。

③它对深入理解电路的工作原理和记忆电路的结构、组成很有帮助。

Ⅱ 汽车的电路原理

汽车电路分发电部分和供电部分及用电(电器)部分。
发电部分有硅整流发电机、内动力输入(皮带和皮带轮)、(电磁场)调节器。
供电部分就是蓄电池及总线。
用电部分有起动机、电容子点火器(汽油车)、机油泵、燃油泵、气泵(用气刹的车)、喇叭、大灯、雾灯、尾灯、仪表和仪表灯、转向灯、刹车灯、头顶灯、空调或风扇、点烟器、音响或电视、倒车雷达、防盗报警电路......且每一路都有开关和保险丝。
高档汽车还有发动机工作智能控制电路。

Ⅲ CPU工作原理和电路图

CPU的工作原理就是:

1、取指令:CPU的控制器从内存读取一条指令并放入指令寄存器。指令的格式一般是这个样子滴:操作码就是汇编语言里的mov,add,jmp等符号码;操作数地址说明该指令需要的操作数所在的地方,是在内存里还是在CPU的内部寄存器里。

2、指令译码(解码):指令寄存器中的指令经过译码,决定该指令应进行何种操作(就是指令里的操作码)、操作数在哪里(操作数的地址)。

3、执行指令(写回),以一定格式将执行阶段的结果简单的写回。运算结果经常被写进CPU内部的暂存器,以供随后指令快速存取。

4、修改指令计数器,决定下一条指令的地址。

(3)电路原理不会扩展阅读:

CPU从内存中接收数据和指令,并处理这些指令,将处理结果再送回内存中结果可以显示和储存起来,周而复始,一直这样执行下去,天荒地老,海枯枝烂,直到停电。CPU内部的工作过程为:控制器-运算器-累加器-储存器-寄存器-累加器。

CPU的工作原理就像一个工厂对产品的加工过程:进入工厂的原料(程序指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储单元)中,最后等着拿到市场上去卖(交由应用程序使用)。

Ⅳ 无稳态电路的工作原理是什么

1、上电瞬间前,Q1Q2都是截止的,上电后瞬间R1,R2让Q1,Q2导通。此刻C1左端和C2右端都是0V电压(Vce导通饱和,小电流时低于0.1V,大电流0.3V左右,实际并不为0V)。C1右端和C2左端都接Q1Q2的基极,导通状态电压约为0.7V。所以电容C1,C2开始充电。此刻Q1,Q2皆导通。

2、当C1,C2开始充电,透过R1,R2的电流被电容充电电流分流(电容端初始电压为0,不能突变,充电电流也很大,Vb得到的电流就很少了,会进入截止)。Vb会瞬间降低。由于元件的不对称,Q1Q2中会有一个先更快进入截止状态。假设是Q1.

3、当Q1一瞬间进入截止,C1左侧电压透过R3充电被抬升到Vcc。右边电压也会跟着被抬升,这样Q2的Vb会被抬升回原来Vbe的0.7V,回到导通状态。不会继续进入截止状态。此刻Q1截止,C1继续充电,(下面4看到,Q1的Vb会慢慢抬升,很快就会离开截止状态进入导通,通)。这个过程是Q1先进入截止,而Q2一直保持导通。

4、当Q1的Vb随着C2充电抬升,很快又回到导通区域。Q1再一次导通,让C1的左侧电位从Vcc快速透过Q1放电回到0V。这样,原来C1两侧电位差是Vcc-Vb,现在左侧被拉低到0V,电压无法突变,右侧电压被拉低为(Vb-Vcc),成为负电压,比电源负极的0V还负。Q2就突然深度截止了。(从原来正的Vb0.7V瞬间变为Vb-Vcc的负电压-4.3V)。此刻,Q1导通,Q2深度截止。

5、此刻,电容C1,左侧0V,右侧Vb-Vcc(-4.3V),电源Vcc5V开始透过R1给C1充电。而C2保持着Vb(0,7V)的电压。Q1保持导通,基极电流由R2提供。Q2保持截止,直到C1充电到Vb(0.7v)才会再次导通。C1从-4.3V充电到0.7V的周期,就是Q2输出高电平,Q1输出低电平的时间,也就是方波的前半个周期的时间。

C1右侧的初始电压为-4.7V,终止电压为0.7V,由电源5V透过R1给C1充电。透过电容充电公式可以计算时间t。

6、当C1充电到0.7V,Q2从截止进入导通。C2的右侧瞬间从Vcc被拉到0V。由于电容电压无法突变,C2左侧电压从Vb的0.7V,瞬间被拉低到0.7-5=-4.3V,负电压让Q1深度截止。此刻,Q1深度截止,Q2导通,Q2的导通基极电流由R1提供。

C2电容从-4.7V开始由电源5V透过R2充电到0.7V,让Q1导通,成为上面5的状态。透过电容充电公式可以计算这个充电周期需要的时间。

7、到此,从上电扰动进入了非稳态。在状态5和状态6中反复交替。Q1Q2反复轮流导通和截止。计算周期t1=0.69*R1C1,t2=0.69R2C2,总周期T=0.69*(R1C1+R2C2),调节R1R2可以调节占空比。如果R1R2,C1C2相等,那么T=1.38*RC,占空比50%。

注意地方就是:

1、R3,R4不能太小,太小让Q1Q2的Ic过大,无法进入饱和区,即使进入,Vce也比较高,如果大于Vb则电路不会震荡。即使三极管进入饱和区了,但随着Ic提高,Vce压降会提高(Vcest),会让方波的低电平提高。但R3,R4过小,会让电压从0拉升回5V时过慢,出现方波上升沿变缓。严重时变成三角波了。

2、R1,R2过大,导致Ib过小Ib=(Vcc-Vb)/R,三极管无法进入饱和截止区,同样方波最低电压也会抬升。当Vce提升到Vb(0.7V)就无法工作了。可选择高放大倍数的三极管。或者用达林顿接法。但达林顿接法让Vb成为1.2V,Vce为0.7V,方波输出低电平总是0.7V。

3、充电周期时间的计算:

电容充电公式Vt=V0+(Vcc-V0)(1-e-t/RC)

化简是Vt=Vcc-(Vcc-V0)e-t/RC

Vt是充电某个时刻t的电压。Vcc是充电无限长的电压,V0是初始电压。

t=-RCln((Vcc-Vt)/(Vcc-V0))

由于V0=Vb-Vcc,Vt=Vb

所以t=-RCln((Vcc-Vb)/(2Vcc-Vb))

由于Vcc>Vb可以近似简化成t=-RCln(Vcc/2Vcc)=-RCln0.5=0.69RC

也可以近似为t=0.7RC,所以整个周期T=1.4RC,频率就是f=1/(2*0.69*RC)=0.72/(RC)

实际电路中,电压越小,Vb的忽略会让误差变大。电压5V之后误差在1%以内,7V以后误差在0.1%以内。3V的电压误差在1.5%以上。

有一个问题就是,反而用精确的公式把Vb算进去,计算的误差反而很大(10V

时5.1%,7V时7.3%,4V时13%)。还不如估算公式准确(基本都在1%以内)。不知道是什么原因。也许电容充电计算部分有问题。但电容充电的初始电压和终止电压是经过实际测试,没有问题的。这个问题还需要深入研究。

这是基极Vb1,Vb2,也就是电容内侧的电压波形。我们看到电容充电从负电压开始(图中波形中间的线是0V)。清楚看到Q2的Vb(也就是C1)电压降了一点接近0V然后又充电慢慢回到Vb导通,此刻让Q1的Vb立刻被拉到负电压状态,开始充电爬升到Vb才导通。让Q2的Vb立刻变成负电压状态。不断反复循环。

Ⅳ 电路原理中叠加定理问题

叠加定理是分析线性电路的重要手段。在线性电路中使用叠加定理,可以有效地简化分析问题的复杂度。

工具/原料

Ⅵ 最近学ALTIUM DESIGNER,可是我不会画电路原理图,没有一点概念,怎么办

如果有那样的感觉,说明问题不是出在操作ALTIUM DESIGNER软件本身,
而是电子方面的基础知识掌握的太薄专弱了,
要加强电子基属础知识的学习,
可以多看些正规出版社的电子入门的书籍(比如人民邮电出版社、电子工业出版社、高等教育出版社),再多请教多思考,把基础打牢了,在学软件的话就会有正确的思路了。

Ⅶ 电路原理考试题

老师会给划范围,出题也简单,把老师布置过的课后题全做了,保你能过内90,因为是tyut嘛!!考试遇到不会容写的,把搭边的公式写上,在图上标上各个节点以及分路电流,和元件电压标号。
什么对于节点1,有I1+I2+I3=0。对于环路1,U1+U2+U3=0,列方程。。。。。
我是过来人,写满了,老师给你分也容易点。梁金蕊老师啊,电气学院的好老师啊!教的我们电路

Ⅷ 之前需要学电路原理吗,电子电路应该怎么学

多钻研电路图,多鼓捣实际电路。

Ⅸ 电路图说明原理1

三图是用来认识和理解互锁的必要性及方法的。
A图里为两路并联自锁启动共用一个停止的控制回路,单看控制回路并没有问题,但如果加上主电路的条件,那就严重了,如果KM和KMR同时得电吸合,那么在主回路中L1相和L3相就会短路!后果不用多说。(听个响吧。)
B图和A图基本一至,只是在线圈前加入了两个接触器的常闭点互锁,这样当KM得电吸合时,KM的常闭点就会断开(KMR线圈前的KM),这样即使按下SB3,KMR也不会得电吸合,也就不会短路。反之一样,两个接触器在同一时间只能有一个吸合,即接触器互锁。
C图,双重联锁。在B图基础之上提升了,其原理就是将按钮的常闭点串联在需要联锁的回路中,图C中当按下SB2时,由于按钮结构,SB2的常闭先断开(KMR左边,KM前的那个闭点),这样就使得在启动KM以前会先对KMR进行一次“停止”操作,这样就不用在切换正反转之前要先按次停止SB1,可以直接用SB2和SB3进行正反转切换了。

阅读全文

与电路原理不会相关的资料

热点内容
北京家居电子商务有限公司 浏览:253
苹果指纹保修吗 浏览:270
木质家具摔裂怎么固定 浏览:296
防水涂料如何用滚筒刷 浏览:563
华苑冠华维修电话 浏览:698
顶楼雨棚多久需要维修 浏览:864
海尔空调武汉维修点 浏览:603
北碚长安4s店维修电话号码 浏览:924
小米售后维修大概需要多久 浏览:949
电脑保修键盘进水保修吗 浏览:398
维修车子需要带什么 浏览:829
维修电脑与家电怎么办理执照 浏览:518
瑞士珠宝保修单 浏览:284
中式古典家具质量怎么样 浏览:296
合肥家具除甲醛如何处理 浏览:457
楼顶开裂用什么防水材料 浏览:441
苹果广西售后维修点吗 浏览:739
广州市苹果维修电话 浏览:46
家电的市场部活动怎么写 浏览:535
开平二手家电市场在哪里 浏览:202