『壹』 射频识别技术基本工作原理
RFID的工作原理是:标签进入磁场后,如果接收到阅读器发出的特殊射频信号,就能凭借感应电流所获得的能量发送出存储在芯片中的产品信息(即Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(即Active Tag,有源标签或主动标签),阅读器读取信息并解码后,送至中央信息系统进行有关数据处理。
RFID技术由Auto-ID中心开发,其应用形式为标记(tag)、卡和标签(label)设备。 标记设备由RFID芯片和天线组成,标记类型分为三种:自动式,半被动式和被动式。现在市场上开发的基本上是被动式RFID标记,因为这类设备造价较低,且易于配置。被动标记设备运用无线电波进行操作和通信,信号必须在识别器允许的范围内,通常是10英尺(约3米)。这类标记适合于短距离信息识别,如一次性剃须刀或可移动刀片包装盒这类小商品。 RFID芯片可以是只读的,也可是读/写方式,依据应用需求决定。被动式标记设备采用E2PROM(电擦写可编程只读存储器),便于运用特定电子处理设备往上面写数据。一般标记设备在出厂时都设定为只读方式。Auto-ID规范中还包含有死锁命令,以在适当情形下阻止跟踪进程。
射频识别技术原理Auto-ID中心开发的电子产品代码(EPC)规范能识别目标,以及所有与目标相关的数据。EPC系统运用正确的数据库链接到EPC码,厂商和零售商能依据权限进行查询、管理和变更操作。一旦标记贴到产品或设备上,RFID识别器便能读取存储于标记中的数据。Auto-ID计划将EPC系统发展成为全球标准,该标准主要包括:识别目标的特定代码(EPC);定义数据的所有者(EPC管理器);定义代码及标记的其余信息;定义货物参数,如库存单元号;将EPC代码转换为Internet地址(目标命名服务ONS);对目标进行描述(物理置标语言PML);聚集和处理RFID数据(专家软件);分配给每类目标的特定号码(串行号);用于互操作性的规范最小集(标记及识别规范),采用RFID技术最大的好处是可以对企业的供应链进行透明管理,有效地降低成本。
系统组成射频识别系统至少应包括以下两个部分,一是读写器,二是电子标签(或称射频卡、应答器等,本文统称为电子标签)。另外还应包括天线,主机等。RFID系统在具体的应用过程中,根据不同的应用目的和应用环境,系统的组成会有所不同,但从RFID系统的工作原理来看,系统一般都由信号发射机、信号接收机、发射接收天线几部分组成。下面分别加以说明:
信号发射机
在RFID 系统中,信号发射机为了不同的应用目的,会以不同的形式存在,典型的形式是标签(TAG)。标签相当于条码技术中的条码符号,用来存储需要识别传输的信息,另外,与条码不同的是,标签必须能够自动或在外力的作用下,把存储的信息主动发射出去。
信号接收机
在RFID系统中,信号接收机一般叫做阅读器。根据支持的标签类型不同与完成的功能不同,阅读器的复杂程度是显著不同的。阅读器基本的功能就是提供与标签进行数据传输的途径。另外,阅读器还提供相当复杂的信号状态控制、奇偶错误校验与更正功能等。标签中除了存储需要传输的信息外,还必须含有一定的附加信息,如错误校验信息等。识别数据信息和附加信息按照一定的结构编制在一起,并按照特定的顺序向外发送。阅读器通过接收到的附加信息来控制数据流的发送。一旦到达阅读器的信息被正确的接收和译解后,阅读器通过特定的算法决定是否需要发射机对发送的信号重发一次,或者知道发射器停止发信号,这就是“命令响应协议”。使用这种协议,即便在很短的时间、很小的空间阅读多个标签,也可以有效地防止“欺骗问题”的产生。
编程器
只有可读可写标签系统才需要编程器。编程器是向标签写入数据的装置。编程器写入数据一般来说是离线(OFF-LINE)完成的,也就是预先在标签中写入数据,等到开始应用时直接把标签黏附在被标识项目上。也有一些RFID应用系统,写数据是在线(ON-LINE)完成的,尤其是在生产环境中作为交互式便携数据文件来处理时。
天线
天线是标签与阅读器之间传输数据的发射、接收装置。在实际应用中,除了系统功率,天线的形状和相对位置也会影响数据的发射和接收,需要专业人员对系统的天线进行设计、安装。
『贰』 什么是射频电路
射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于1000次的称为高频电流,而射频就是这样一种高频电流。有线电视系统就是采用射频传输方式的
在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。
在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波称为射频,英文缩写:RF
组成编辑
高频电路基本上是由无源元件、有源器件和无源网络组成的。高频电路中使用的元器件与低频电路中使用的元器件频率特性是不同的。高频电路中无源线性元件主要是电阻(器)、电容(器)和电感(器)。
在电子技术领域,射频电路的特性不同于普通的低频电路。主要原因是在高频条件下,电路的特性与低频条件下不同,因此需要利用射频电路理论去理解射频电路的工作原理。在高频条件下,杂散电容和杂散电感对电路的影响很大。杂散电感存在于导线连接以及组件本身存在的内部自感。杂散电容存在于电路的导体之间以及组件和地之间。在低频电路中,这些杂散参数对电路的性能影响很小,随着频率的增加,杂散参数的影响越来越大。在早期的VHF频段电视接收机中的高频头,以及通信接收机的前端电路中,杂散电容的影响都非常大以至于不再需要另外添加电容。
此外,在射频条件下电路存在趋肤效应。与直流不同的是,在直流条件下电流在整个导体中流动,而在高频条件下电流在导体表面流动。其结果是,高频的交流电阻要大于直流电阻。
在高频电路中的另一个问题是电磁辐射效应。随着频率的增加,当波长可与电路尺寸12比拟时,电路会变为一个辐射体。这时,在电路之间、电路和 外部环境之间会产生各种耦合效应,因而引出许多干扰问题。这些问题在低频条件下往往是无关紧要的。
『叁』 射频电路设计
这个教材,确实难找,我的感觉是,先通过《微波技术基础》,了解传输线,s参数的概念,史密斯园图-主要是为了解一些电路匹配的必要知识,了解电磁场的基础知识-麦克斯韦方程(初通即可),因为现在有很多的仿真软件可以帮助深刻认识电磁场,天线,电路匹配等等,对于有源器件应该学些《微波有源电路》的知识,了解晶体管射频模型,低噪放,混频器,锁相环,功放设计方法,另外要了解无线《通信原理》,了解些通信制式-AM,FM,FSK,MSK,QAM,OFDM,MIMO,还有就是布线方面要积累一些知识-如电容,电感的自谐振频率,一般射频布线都要有一块整地,射频传输线的线宽要特殊计算,敏感新号-小信号接收,锁相环CP,等要单独隔离布线,有时需要用仿真软件来辅助完成,需要经验的积累和理论的分析同时进行,寻序渐进,多本书相互佐证,遇到不懂先跳过,以后在查阅,可以先会做电路,先做起来,日后再深究原理。射频电路很有意思,我已经搞了很久,获益匪浅,祝你成功!
『肆』 下图为射频取样监测电路,请说出:
C1 C2为调节频率的电容,和下面的电感L、电容组成谐振网络,工作于你的射频中心频率。T的输出进行全波整流,得到的电压UJ送入运放-端和运放+极基准保护电压UR进行比较。如果L低电平有效,也就是UJ>UR时,得到L为低电平。当两路射频信号不平衡时或者相位相差较大时会引起保护。你的电路没给出说明工作环境和条件,只能这样回答你了。如果可以,把图给出详细一点,功能也说一下才可以
『伍』 什么是射频模拟电路
你可以简单的从字面上去理解,可以让这个电路射出电磁波的的电路,就叫射频电路
频率在300KHZ到300GHZ之间内
而高频是相对于低容频而论,没有一个绝对的概念的,对于功放电路而言,10KHZ就叫高频了,对于收音机电路,465KHZ都只能算是中频
现在明白了没有
高频包括射频而已
『陆』 射频通信电路
只个图是三个传输线变压器并联, 在每一个变压器的右端的电压分别是最上边的是3/2Vi , 中间的正好是 Vi , 下面的也是3/2Vi 加起来的总和是 4Vi , 而负载上的电流只有1/4 的输入总电流 . 需要强调的是分析传输线变压器是在假定只有奇模工作, 没有偶模工作. 记住这一点了就不难分析了.
『柒』 如何学习射频电路
射频电路要快速入门,不可能的。这东西对经验要求十分得高,除非你能找到一个很好的专老师或者师傅,他属愿意倾心相授。不过你也可以做一些工作。
1、复习一下高等数学,既然有研一基础,恐怕数学上应该有一些积累。主要是一些积分变换(傅立叶、拉普拉斯、Z),常微偏微方程这些东西,在微波和电磁波领域,最基础的就是麦克斯韦方程,经常跟它打交道,你的数学基础好,会省力很多,也容易做论文什么。
2、有空的话,温习一下电路基础里面的分布参数电路,模电中的基本放大电路,高频电子线路。另外,你得补一下微波方面的课程,我记得我本科的时候,微波有三门课,应用电磁学(应该是对应你的微波原理),微波与光导波技术,射频电子技术(属于高频加强版,但不是高频,高频是另外单独的课程)。也可以再看看《高速数学设计》这本书,可能有用。
射频电路这个领域难度很大,进步比较慢,不过做的人很少,找工作容易。
『捌』 射频电路的简介
射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于1000次的称为高频电流,而射频就是这样一种高频电流。有线电视系统就是采用射频传输方式的
在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。
在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波称为射频,英文缩写:RF
『玖』 怎样识别射频电路,逻辑电路,电源电路
射频电路是指从天线(ANT)到收、发基带信号(RXI/Q、TXI/Q)为止的这部分电路,它包括接收射频、发射射频和频率合成器三大部分。射频信号的特点是串行通信方式,它在收发过程中,不断地被“降频”(接收)和“升频”(发射)。
逻辑/音频电路的主要特点是大规模集成电路,并且多数是BGA元件,因此这部分原理电路图常用UXXX表示集成电路,其管脚标注为A0、A1、E12等。常见的音频/逻辑电路有微处理器(CPU)、字库(也称版本FLASH)、暂存(SRAM)、码片(EEPROM)和音频IC。逻辑电路的识别主要查找集成模块的代码和英文标注(如CPU、FLASH、SRAM、EEPROM),有的直接给中文标注。音频电路的识别是通过受话器(MIC)和受话器(EAR、SPK)的图形或英文缩写来查找的。
电源电路是:电池、集成的电源IC或分散式稳压管组成。提供的VCC、VDD、VRF和VVCO等各路电压。升压电路、充电电路是电源的重要部分。电池电源用VB、B++来表示。