⑴ 三极管非门电路的工作原理
这里T1不是当成三极管使用的,而是具有一个正极、两个负极的特殊二极管。因为一般内三极管发射结有电容流时,就产生大很多倍的电流流进管子。这里T1“发射结”有电流时,集电极根本无电流。发射结”有电流时,集电极产生电流流出管子。
从4kΩ电阻到T1的“集电结”,到T2的发射结,再到1kΩ电阻,实际是两只电阻、两只pn结组成的串联分压电路,在这个回路中,越往下电位就越低。所以T1的基极电位总是高于集电极0.7V的。
pn结正向压降0.7V,两只pn结正向压降1.4V,那么两只电阻压降为(5-1.4)V=3.6V,4kΩ电阻压降为[4/(4+1)]×3.6V≈2.9V,故T1集电极电压为5-2.9-0.7=1.4V。
水向低处流,电流也是向低处流。
A端输入3.6V以上高电平电压时,T1集电极1.4V电压低于发射极电压,4kΩ电阻电流经T1集点结流向T2发射结,使T2饱和,T4饱和,电路输出低电平。
A端输入1V以下低电平电压时,T1发射极电压低于集电极1.4V电压,4kΩ电阻电流经T1发射结流向低电平输入端A,T2得不到电流而截止,T4截止,Ucc经R2使T3饱和导通,电路输出高电平,实现非逻辑关系。
⑵ 与非门电路图原理
1)先温习三极管构成,在基极看去,基极与发射极,基极与集电极表专现为两个二极管;属
2)当A、B都为高电平时,发射结为截止,而T1基极与集电极之间的二极管,和T2、T3的发射结(三个二极管)正向串联,通过R1接上电源就会导通,所以此时T1基极电压Vb1=2.1V。T2基极电压 Vb2=1.4V,T3基极电压 Vb3=0.7V,T3导通使输出端Y输出低电平;
3)当A、B其中一个为低电平时,T1发射结导通,使基极电压 Vb1=0.7V,这个电压不足以让后级的发射结导通,所以T2、T3就截止,T4导通使Y输出高电平;
从逻辑表现上,就实现了与非门功能。
⑶ 与门电路和非门电路的区别是什么
逻辑电路
信号取值为0和1或有限个值,而且输入信号与输出信号之间存在确定逻辑关系的电路 。信号值为0的含义是 :电路断开,或低电位信号 ,或无脉冲信号 ;信号为1的含义是 :电路导通,或高电位,或有脉冲信号。逻辑电路有两种基本类型:一为组合逻辑电路,一为时序逻辑电路。
最简单的二值逻辑电路在两个输入信号a、b与一个输出信号 p之间的三种最基本的逻辑关系为“与”运算 、“或”运算和“非”运算(见表)。这三种基本运算可用相应的门电路实现。
由各种门电路和记忆元件(如触发器)等组成的电路通称为数字电路。研究逻辑电路主要是研究数字电路和其他具有开关特性的元件所构成的电路中各点信号之间的逻辑关系(包括时间关系)及所实现的功能。早期的逻辑电路主要是继电器接点电路。随着电子计算机的出现,数字电路成为研究逻辑电路的主要对象。20世纪60年代以前,研究的重点在于如何用最少的元件实现给定的逻辑功能。后来随数字集成电路技术的发展,电路的可靠性、易测性、模块化,以及工作速度的提高和故障诊断等遂成为研究的主要课题。利用计算机对逻辑电路进行分析、设计,也是研究逻辑电路的重要方向。逻辑电路的应用范围十分广泛,特别是在计算机、数字控制、通信、生产过程自动化和仪表方面应用更多。它与大规模、超大规模数字集成电路的研究和发展有密切的关系。
英国数学家G.布尔为了研究思维规律(逻辑学、数理逻辑 )于1847和1854年提出的数学模型。此后R.戴德金把它作为一种特殊的格。所谓一个布尔代数,是指一个有序的四元组〈B,∨,∧,*〉 ,其中B是一个非空的集合 ,∨与∧是定义在B上的两个二元运算 ,* 是定义在B上的一个一元运算,并且它们满足一定的条件。
布尔代数由于缺乏物理背景,所以研究缓慢,到了20世纪30~40年代才又有了新的进展,大约在 1935年, M.H.斯通首先指出布尔代数与环之间有明确的联系,他还得到了现在所谓的斯通表示定理:任意一个布尔代数一定同构于某个集上的一个集域;任意一个布尔代数也一定同构于某个拓扑空间的闭开代数等,这使布尔代数在理论上有了一定的发展。布尔代数在代数学(代数结构)、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用;1967年后,在数理逻辑的分支之一的公理化集合论以及模型论的理论研究中也起着一定的作用。近几十年来,布尔代数在自动化技术、电子计算机的逻辑设计等工程技术领域中有重要的应用。
⑷ 非门电路是______端输入、______端输出的电路。
或门输入端只要有“1”,输出端就为“1”.如果 a、b为输入信号,c为输出信号,则内该电路是 或门电路;容非门的特点:输入状态和输出状态完全相反.如果b为输入信号,a为输出信号,则该电路由 非门电路. 故答案为:或门,非门
⑸ 请问逻辑门电路中 非门原理 结果很简单的,需要详细一点的分析。
我再说得详细一些吧。一般的数字电路逻辑,低电平为0,高电平为1,可以理解内吧。那么什么是低电平呢容,一般在TTL(VCC=5V)电路中,<1.4V的电压为低电压,>2.7V的为高电压。有了上面基础,我们再说上面的电路。我们假设VCC为5V
(a)图是三极管,当A点电压<0.7V时(A为低电平,0),三极管从上到下截止,VCC到地之间,是断开的,那么F的输出就是VCC(F为高电平,1)。 同时,如果A点电压比较高,比如说为5V,那么此时三极管从上到下导通,即VCC通过Rc接到了地,此时F点输出就为0了,所以由此可以得出,F点,从逻辑上来说,是A点得反。
你可能会有几个问题,比如说,为什么是<1.4V,为什么是>2.7V,中间的去哪了,又或者说,我说<0.7V截止,那么稍微大一点,A为0.8,此时导通F也为0啊之类的,这些就是稍微深入点了,你就可以去读读书,从书中寻找更多的为什么。
⑹ 非门电路讲解详细点
非门电路就是输入和输出是反逻辑,可以用三级管来实现也可以用mos管来实现,当用专三极管来实现时就是输属入端接三极管的基极,输出端连接集电极,发射极接地,这样当输入高电平时,输出跟地之间的电位差为0.3伏左右,也就在低电位。当输入低电平时三极管截止集电极输出高电平。mos管也差不多一样,就功耗与响应速度不一样
⑺ 求与门,或门,非门,与非门,或非门,与或门的含义和电路图
门电路是数字逻辑的一种称呼,有三种基本逻辑关系,即与、或、非,下面用一般电路来解释:
1、与门
与:指同时的意思,A和B或者更多的条件,同时具备时,才能有结果,只要有一个条件不具备,就没有结果。
只有当两个开关都闭合时,电灯才会亮,就是两个开关串联。
2、或门
或:或者的意思,许多条件A,B,C等,其中至少有一个条件具备时,就有结果,只有所有条件都不具备时,才没有结果。
只需要一个开关闭合,电灯就会点亮,就是两个开关并联。
3、非门
非:就是相反的意思,具备条件A,没有结果,不具备条件A,则有结果。
只有在开关断开时,电灯才会亮,就是一个开关和电灯并联。
(资料来源:网络:门电路)
⑻ 非门电路是什么样子的
非门就是反相器,也就是由一支三极管构成。基极高电平时集电极输出低电平。
⑼ 什么是门电路,非门电路,与非门电路
【门】电路,就是【开关】电路。1、【与】门电路,就是以【与】的关系搭建的开关电路。2、【或】门电路,就是以【或】的关系搭建的电路。3、【非】门电路,就是以【非】的关系搭建的开关电路。4、与非门电路,就是以【与】相反的开关电路。——单独解释【与】、【或】、【非】、【与非】举例:1、【与】:一个灯泡串联两个开关接电源,把灯开亮的条件是,两个开关都接通,灯泡才亮,这两个开关的【串联】就是【与】的关系,即我【与】你同时接通才能搭建一个使灯得到信号的结果。2、【或】:两个开关并联接好再控制一个灯泡,我【或】你都能接通给灯泡提供信号使灯泡发光,两个开关【并联】是【或】的关系。3【非】:在一个发光的灯泡上并联一个开关,开关接通时,灯泡反而不能发光,即【非】发光,这个开关制止了信号,是【非】的功能。4、【与非】:把两个串联好的开关,并联在发光的灯泡的两端上,在两个开关都接通时,灯泡不发光,即我【与】你同时【串联】接通时,灯泡是【非】发光状态。还有【异或】门、【异或非】门-------道理同上。现在以【与非门】电路应用举例:一个4【与非门】集成块,内部含4个独立的【与非门】。只举例其中一个【与非门】的工作情况,它有两个信号输入端,一个输出端,输出端接一个已经发光的灯泡。当给一个输入端一个正信号,灯泡仍然发光,当两个输入端都加给一个正信号时,灯泡熄灭。也就是我【与】你同时发出信号时,灯泡【非】发光。
⑽ 怎么用三极管作一个非门电路
按照下图电路图即可:
当输入为高电平+5V时,Q1基极与发射极间Ube> 0.7V,Q1导通,输出点专电压属为Q1的集电极和发射极之间的压降,即0.3V,即输出为数字量0;当输入为低时,Q1集电极和发射极之间未导通,输出电压为上拉的电压,+5V,即数字量1。
TTL与非门电路结构与工作原理
分立元件门电路虽然结构简单,但是存在着体积大、工作可靠性差、工作速度慢等许多缺点。1961年美国德克萨斯仪器公司率先将数字电路的元器件和连线制作在同一硅片上,制成了集成电路。
由于集成电路体积小、质量轻、工作可靠,因而在大多数领域迅速取代了分立元件电路。随着集成电路制作工艺的发展,集成电路的集成度越来越高。
按照集成度的高低,将集成电路分为小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路。根据制造工艺的不同,集成电路又分为双极型和单极型两大类。TTL门电路是目前双极型数字集成电路中用的最多的一种。