『壹』 LC谐振电路和LC振荡电路有什么区别
谐振电路是用于选频的,射频输入、输出端一般都有选频电路,就是利用版谐振原理权,让谐振点附近的频率通过或滤波到地(陷波器),这种情况LC可以单独工作;振荡电路是利用正反馈原理,产生LC谐振频率附近的振荡信号,必须有有源器件参加才能振荡。
『贰』 制作lc振荡电路图
最简单的电磁波发射装置只要有一节干电池,一根导线,一个平面锉(修自信车胎用的那种,表面是凸凹不平的)
用把电源的负极放在锉的一端,保持接触良好,用导线的一端连接电源的正极,另一端在锉的面上来回移动,把收音机调到空台上,就能听到“咔咔”的声音,这就是收音机受到的电磁波
补充:上面的装置只是来验证电磁波存在的,不能用来研究电磁波的规律。
『叁』 分析下这个LC振荡电路图
简明说一下,便于理解
这是一个共射极放大电路,变压器T初级线圈L1和版C构成LC谐振电路,发权生谐振是阻抗最大,其它情况阻抗最小;
RB1和RB2是基极偏置电阻,保证三极管工作在放大区,CB为信号输入耦合电容,RE为直流负反馈
用来稳定三极管静态工作点,减小信号失真输出,CE为旁路电容,用来提高信号增益,变压器次级线圈L2为信号反馈端
工作原理如下:
当直流电源EC供电瞬间,电流流过RB1和RB2,通过分压电阻为基极提高合适的工作电压,三极管开始工作在放大状态,于此同时作为三极管负载的L1和电容C开始工作,这里需要注意的是通电瞬间电流是由小逐渐变大直到达到稳定后才不会改变,电压随之也会改变,由于存在这样一个电流变化的过程,次级线圈L2就会被感生处相同的信号通过电容CB送回输入端,使得信号不断被放大输出,由于还未达到谐振频率所以此时L1会有很大电流流过流入集电极,U0电压很小,可以认为没有输出,L2再次感生信号送回去输入端,直到信号频率达到了谐振频率时,L1和C阻抗很大我们可以理解为无群大(其实不是无群大,理想状况下阻值为无群大),这样U0就会产生电压输出,就这么简单
『肆』 直流电在LC谐振电路会怎样
1、LC元件只对交流电压(电流)起作用,直流电无效(L等于导线,C等于开路),通常振荡器的直流电输入是加给晶体管等器件作为振荡能源的,不是加给LC的。电压高,晶体管可能输出更大的振荡波型。
2、L附近有磁场,还不能算是电磁波,电磁波是电场、磁场交替产生并传播的。L的磁场主要集中在线圈内部,泄露出去的能量很小,因为线圈对边的导线产生的磁场是方向相反的,如左图中线圈的上、下边电流流向相反,左、右边电流流向也是相反。对于近处,由于靠近的一边导线比远离的一边有明显距离差,两者不完全抵消,所以能感应到一点耦合出来的磁场,如果远离线圈,比如说几米以外,那么线圈直径这点距离差几乎忽略不计,相反的电流方向磁场效果完全抵消。
3、要扩大L的天线效应,就要拉大线圈的直径。由于电流速度为光速,当导线长度足够长,高频电流在导线上就不再是同相位了,有的区域处于正半周,有的处于负半周,如中间图描述,一个正负半周交替称一个波长。把一个波长的导线圈起来(老式黑白电视机上挂过的圆环天线),或者折合起来,如右图,就是电视机用的折合振子室外天线,可以发现对应中间图上的A、B、C区的电流方向就统一了,大家是齐心合力,而不是相互拆台。但是随着能量发射出去,消耗的能量将转化为线圈中等效电阻,当你把线圈彻底改造为天线后,它就不再是L,大家都知道,这种电视天线等于一个300Ω的纯电阻!
4、同样C内部对电场也是不能出去的,如果把电容的两个极板逐渐拉开,那么电场渐渐外漏,如果拉成天上一片、地下一片,那就成了一个拉杆天线。你可以看到抗战时的老式电台天线顶上还带了几个叶片,就是代替电容的那个极板,电容的另一个极板就是大地或者机箱底板。但是这样改造好后的元件也就不是C了,是一支50Ω阻抗的鞭状天线。
5、综上所述,LC谐振回路不宜做天线,越把它改造得像天线,就越远离谐振功能。
6、电感电流不能突变,电容电压不能突变,LC回路不能产生脉冲,只能是正弦波,脉冲波中含有丰富的高次谐波分量都给LC回路滤掉了。
7、如果只用L,不用C,利用L电流不能突变的原理,用开关突然关掉L中的电流,倒有可能感应产生高压脉冲。不过它经常会打穿那个关断它的开关器件,在开关电源中是要小心应付问题。
8、振荡频率计算方法:LC相乘后开根,再乘以2π,取倒数。要增加振荡频率,请减小L、C的数值。
『伍』 LC电路谐振的原理是什么
电容的在线电流比电压超前90度!电感的在线电压比电流超前90度!
这两个元件并联后接入电路!在电路通电流的瞬间电容会产生一个充电脉冲!电感会产生一个自感电势!因两者的电流和电压最大值在时间相位上互差90度!这就造成了两者的电流或电压总是在你强我弱或你弱我强的状态下变化!这就是振荡!但这种振荡是会随着电路电流和电压的稳定会慢慢停歇的!因此这种振荡也称衰竭式振荡!为了使这种振荡不断的维持下去!就必需给LC回路补充同频的振荡能量!因此就有了三极管放大电路的回授(反馈)电路产生!有了源源不断的同频脉冲的回授补充!
『陆』 LC振荡电路的工作原理
开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。
LC振荡电路物理模型的满足条件
①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。
②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。
③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。
能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。
振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。
充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。
放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。
充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。
放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。
在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。
『柒』 lc谐振电路
LC谐振电路指由LC为主要电抗元件组成的电路。
在某一特定频率上,ZL=ZC;或表达为 ω回L=1/ωC
LC电路是一个自闭答电路,在没有外电路的情况下L与C总是一个是电源一个是负载。
而电路的决定了:LC电压相同,LC的电流也相同。
一个振荡周期分四个阶段:
1、0-90°,电感给电容充电,电压升高,电流减小。
2、90-180°,电容经电感放电,电流反向增大,电压减小。
3、180-270°,电感给电容反向充电,反向电压增加,反向电流减小。
4、270-360°,电容经电感放电,电流增大,反向电压减小,
注意对外电路来说,电流超前或滞后指大小,方向却始终是以外电路规定的方向为参考方向,所以图中的iL对外电路的参考方向来说是负的,对LC谐振电路来说是同相的(可以看作串联回路)。
对外电路来说:在LC并联时,端电压不为0,但总电流为0,所以在外电路看LC并联谐振时的阻抗为∞。
将CL谐振荡电路的一端的接点拆开看就是LC串联,电流方向相同,L和C上的电压相反,所以对外电路来说:总电压为0,总电流不为0,说明LC串联谐振时总阻抗为0。
『捌』 LC并联谐振电路的原理
谐振的实质是电容中的电场能与电感中的磁场能相互转换,此增彼减,完全补偿。电场内能和磁场能的总和时刻容保持不变,电源不必与电容或电感往返转换能量,只需供给电路中电阻所消耗的电能。
谐振电路在无线电技术、广播电视技术中有着广泛的应用。各种无线电装置、设备、测量仪器等都不可缺少谐振电路。这种电路的显著特点就是它具有选频能力,它可以将有用的频率成分保留下来,而将无用的频率成分滤除,比如收音机、电视机。
(8)lc共振电路扩展阅读
LC并联谐振电路的特点:
1、电流与电压相位相同,电路呈电阻性。
2、串联阻抗最小,电流最大:这时Z=R,则I=U/R。
3、电感端电压与电容端电压大小相等,相位相反,互相补偿,电阻端 电压等于电源电压。
4、谐振时电感(电容)端电压与电源电压的比值称为品质因数Q,也等于感抗(或容抗)和电阻的比值。当Q>>1时,L和C上的电压远大于电源电压(类似于共振),这称为串联谐振,常用于信号电压的放大;但在供电电路中串联谐振应该避免。
『玖』 LC谐振电路是什么意思
呵呵,一般都是以荡秋千来比如;你不再施加外力,秋千的摆幅会越来越小,直至停下来;
秋千是势能和动能交替转换,而LC谐振电路是磁场和电场的转换,也就是电能和磁能交替转换;
『拾』 什么是LC震荡电路回路的Q值
Q值是品质因数。其实它就相当于一个放大倍数。因为LC振荡回路是一个选频网路,谐振时放大倍数最大。我说的是LC串联谐振回路。公式是Q=WL/R。它与L和L的内阻R,以及信号的频率W有关。