A. 何谓补偿原理它的优点是什么
电容器和电动机都需要无功功率,但是他们需要的无功功率正好是方向相反的。内所以就可以利用这个容反相的特点,在电机需要无功时,正好电容放出无功,反过来,电机放出无功时,又是玷辱吸收无功,这样就可以互补了,电机或电容就不需要从电源那里索取无功功率,就提高了电网的效率,提高了设备的功率因数。
补偿容量的计算,理论上是以负载的无功功率需求为依据。但是实际中因负载时常变化,所以电容柜只好选取最大需求为准,配合自动补偿,达到按负载需要补偿。可到网络贴吧--”无功补偿互助营“去看看,上面有类似问题
B. 补偿法测电压有何优点
补偿法测电复压的优点为制减小甚至消除电表内阻的存在给测量带来的误差。
由于电压表、电流表内阻的客观存在,直接用电压表和电流表测量有源二端网络的开路电压和短路电流,必然带来一定的测量误差,原因是电表的接入改变了原电路的工作状态。为了减小甚至消除由于电表内阻的存在给测量带来的误差,可以改进测量方法,补偿测量法就是其中重要的一种。从以上的理论分析和实际测试结果表明,采用适当的补偿测量法,可以减小甚至消除电表内阻的存在给测量带来的误差。
补偿测量的方法补偿的目的都是使电表的接入不应改变原电路的工作状态,同时使电表的读数显示的是被测量的数值。补偿测量法由于受条件和仪器设备等因素的影响,一般来说只适用于高精度测量的科研工作中,不适用于一般的工程测量。具体测量时,采用哪种方法更好,必须由实验条件和仪器设备以及对测量精度的要求来决定。
C. 什么是“电压补偿”
电压补偿也是,功率因数的补偿。、无功补偿的原理
电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.
2.无功补偿的意义
(1)补偿无功功率,可以增加电网中有功功率的比例常数
(2)减少发,供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cos4=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW.对原有设备而言,相当于增大了发,供电设备容量.因此,对新建,改建工程.应充分考虑无功补偿,便可以减少设计容量,从而减少投资.
D. 请问电路里的补偿定理的具体内容是什么
补偿来定理:在线性电路中,某源支路电阻R的变化量R1,即电阻从R变成了R+R1,所带来的在各支路电流的分布变化,即电流从I变成了I+I1,可用一个E'=IR1的电势来代替(电势方向与I相反),而不影响电路中的电流分布。
注意E'等效代替的电流的变化量,即I1,而非I+I1。
自己的大白话,没翻查课本,大体意思就是这个,推导用的是替代+叠加。
E. 为什么传感器内部要加补偿电路
一般要在
应变计电路中附加对零点和灵敏度的温度补偿。即除了应变计外,内其中还增加了容
各种补偿电阻。
零点补偿的目的是尽量减小电桥零点随温度的变化,因此,除应变计本身的温度
自补偿外,又加入了电阻温度系数和电桥中应变计的温度系数不同的电阻元件
(如铜电阻或镍电阻等),以加强补偿作用。
灵敏度补偿的目的是减小输出电压随温度的变化,即补偿弹性体的弹性系数和应
变计的灵敏度系数随温度的变化。因此,对电桥中串接了两个与电桥温度补偿作
用相同的电阻。同时电路中的其它电阻用于将电桥的初始平衡,额定输出和输入
电阻等参数调整到规定的数值。
深圳现代豪方 技术 希望对你有帮助!
F. 芯片内部的补偿电路是什么意思
补偿的目的抄一般是因为器件随温度环境的变化,工作点、性能会产生漂移,这种情况往往需要使用温度特性相反的电容、电阻进行补偿,以便抵消漂移。芯片内部补偿就是内部集成了补偿器件,使用起来更方便一些,不用自己再加电路了。
G. 运放为什么需要补偿电路
刚刚回答了一个类似的问题,现在来回答你的问题。首先我要确认你说的补偿电路时RC并联反馈补偿。如果是,请往下看。
一般运放电路会接一个反馈电阻,构成负反馈,原理很简单,想必楼主知道不多说。下面我说一下为什么还要并联一个电容,也就是构成所谓的补偿电路。
一般线性工作的放大器(即引入负反馈的放大电路)的输入寄生电容Cs会影响电路的稳定性。放大器的输入端一般存在约几皮法的寄生电容Cs,这个电容包括运放的输入电容和布线分布电容,它与反馈电阻Rf组成一个滞后网络,引起输出电压相位滞后,当输入信号的频率很高时,Cs的旁路作用使放大器的高频响应变差,其频带的上限频率约为:ωh=1/(2πRfCs)若Rf的阻值较大,放大器的上限频率就将严重下降,同时Cs、Rf引入的附加滞后相位可能引起寄生振荡,因而会引起严重的稳定性问题。对此,有两个解决方法。一个简单的解决方法是减小Rf的阻值,使ωh高出实际应用的频率范围,但这种方法将使运算放大器的电压放大倍数下降(因Av=-Rf/Rin)。为了保持放大电路的电压放大倍数较高,更通用的方法是在Rf上并接一个补偿电容Cf,使RinCf网络与RfCs网络构成相位补偿。RinCf将引起输出电压相位超前,由于不能准确知道Cs的值,所以相位超前量与滞后量不可能得到完全补偿,一般是采用可变电容Cf,用实验和调整Cf的方法使附加相移最小。若Rf=10kΩ,Cf的典型值丝边3~10pF。对于电压跟随器而言,其Cf值可以稍大一些。
希望你能看懂,呵呵。说简单一点,为了消除自激振荡加了电容C做为超前补偿。
H. 什么是电压补偿
I. 补偿电路的原理
LT®6110是一款具有一个电流模式输出的精准型高端电流检测器件,专为控制一个可调电源或电压调节器的输出电压而设计。其可用于补偿由于导线、印制线或电缆中的电阻之原因而在一个远端负载上引起的电压降。LT6110
可通过一个串接式内部或外部检测电阻器来监视负载电流。提供了两个与负载电流成比例的电流模式输出 (一个吸收电流,一个供应电流)。这使得 LT6110
能够调节多种稳压器的输出电压。可采用任一输出来监视负载电流。低 DC 失调允许使用一个小的检测电阻器,并可对导线电压降之中的小幅变化实施高精度控制。
J. 什么是补偿分压电路,怎么理解啊
通常意义上的信号发生器多以电压信号的方式输出,所以您提的问题应该改为回\\“…几十答微伏到几十毫伏…\\”。内部实现方式也不复杂,先是带负反馈的多级放大电路,之后是带频率补偿的电阻分压电路。所以您说的用电阻分压不但是可以的,而且内部已经使用了。至于电阻分压电路的设计,难以用简单地话语描述,建议您多学些电子电路和产品方面的知识吧。