『壹』 晶体管共射极单管放大器实验报告怎么写
晶体管共射极单管放大器
一、实验目的
1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3、 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理
图10-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端B点加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。只有测量放大器输入电阻时,才可以从A点加入输入信号。
图10-1 共射极单管放大器实验电路
在图10-1电路中,当流过偏置电阻RB1和RB2 的电流远大于晶体管T 的
基极电流IB时(一般5~10倍),则它的静态工作点可用下式估算
UCE=UCC-IC(RC+RE)
电压放大倍数
输入电阻
Ri=RB1 // RB2 // rbe
输出电阻
RO≈RC
1、 放大器静态工作点的测量与调试
1)静态工作点的测量
测量放大器的静态工作点,应在输入信号ui=0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流IC以及各电极对地的电位UB、UC和UE。一般实验中,为了避免断开集电极,所以采用测量电压UE或UC,然后算出IC的方法,例如,只要测出UE,即可用
算出IC(也可根据 ,由UC确定IC),
同时也能算出UBE=UB-UE,UCE=UC-UE。
为了减小误差,提高测量精度,应选用内阻较高的直流电压表。
2)静态工作点的调试
放大器静态工作点的调试是指对管子集电极电流IC(或UCE)的调整与测试。
静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时uO的负半周将被削底,如图10-2(a)所示;如工作点偏低则易产生截止失真,即uO的正半周被缩顶(一般截止失真不如饱和失真明显),如图10-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压ui,检查输出电压uO的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。
(a) (b)
图10-2 静态工作点对uO波形失真的影响
改变电路参数UCC、RC、RB(RB1、RB2)都会引起静态工作点的变化,如图10-3所示。但通常多采用调节偏置电阻RB2的方法来改变静态工作点,如减小RB2,则可使静态工作点提高等。
图10-3 电路参数对静态工作点的影响
2、放大器动态指标测试
放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。
1)电压放大倍数AV的测量
调整放大器到合适的静态工作点,然后加入输入电压ui,在输出电压uO不失真的情况下,用交流毫伏表测出ui和uo的有效值Ui和UO,则
2)输入电阻Ri的测量
为了测量放大器的输入电阻,按图10-4 电路在被测放大器的输入端与信号源之间串入一已知电阻R,在放大器正常工作的情况下, 用交流毫伏表测出US和Ui,则根据输入电阻的定义可得
图10-4 输入、输出电阻测量电路
测量时应注意下列几点:
① 由于电阻R两端没有电路公共接地点,所以测量R两端电压 UR时必须分别测出US和Ui,然后按UR=US-Ui求出UR值。
② 电阻R的值不宜取得过大或过小,以免产生较大的测量误差,通常取R与Ri为同一数量级为好,本实验可取R=1~2KΩ。
3)输出电阻R0的测量
按图10-4电路,在放大器正常工作条件下,测出输出端不接负载 RL的输出电压UO和接入负载后的输出电压UL,根据
即可求出
在测试中应注意,必须保持RL接入前后输入信号的大小不变。
4)最大不失真输出电压UOPP的测量(最大动态范围)
如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节RW(改变静态工作点),用示波器观察uO,当输出波形同时出现削底和缩顶现象(如图10-5)时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出UO(有效值),则动态范围等于 。或用示波器直接读出UOPP来。
图 10-5 静态工作点正常,输入信号太大引起的失真
三、实验设备与器件
1、实验电路板 2、函数信号发生器
3、双踪示波器4、交流毫伏表
5、万用表 6、模拟实验箱
四、实验内容
按图10-1接线。先将实验板固定到实验箱面板上。电路板上是两级放大电路,本实验用第一级(左边)放大器,实验前用导线短接发射极100Ω电阻和+12V供电支路上开路点,交流毫伏表和示波器的屏蔽线信号线黑笔都联公共端(发射极为公共端,即接地端),信号源输出信号线红笔接B点(与耦合电容C1相连),交流毫伏表的红笔接B点时测量Ui,接输出端(与耦合电容C2相连),则测量Uo。从示波器CH1、CH2引出信号线的两个红笔(探针)分别接放大器的输入端和输出端,可观察ui和uo波形。
1、调试静态工作点
接通直流电源前,先将RW调至最大,函数信号发生器输出旋钮旋至零。接通+12V电源、调节RW,使IC=2.0mA(即UE=2.0V),用直流电压表测量UB、UE、UC及用万用电表测量RB2值。
2、测量电压放大倍数
在放大器输入端加入频率为1KHz的正弦信号uS,调节函数信号发生器的输出旋钮使放大器输入电压Ui 10mV,同时用示波器观察放大器输出电压uO波形,在波形不失真的条件下用交流毫伏表测量下述三种情况下的UO值,并用双踪示波器观察uO和ui的相位关系
3、观察静态工作点对电压放大倍数的影响
置RC=2.4KΩ,RL=∞,Ui设为20mV,调节RW,改变大小IC,用示波器监视输出电压波形,在uO不失真的条件下,测量数组UO和AV值,
4、观察静态工作点对输出波形失真的影响
置RC=2.4KΩ,RL=2 KΩ,调节RW使IC=2.0mA,再逐步加大输入信号,使输出电压u0 足够大但不失真。 然后保持输入信号不变,分别增大和减小RW,使波形出现失真,绘出u0的波形,并测出失真情况下的IC和UCE值,记入表10-4中。每次测IC和UCE 值时都要将信号源的输出旋钮旋至零。
五、实验总结
1、 列表整理测量结果,并把实测的静态工作点、电压放大倍数、输入电阻、输出电阻之值与理论计算值比较(取一组数据进行比较),分析产生误差原因。
2、总结RC,RL及静态工作点对放大器电压放大倍数、输入电阻、输出电阻的影响。
3、讨论静态工作点变化对放大器输出波形的影响。
4、分析讨论在调试过程中出现的问题。
『贰』 晶体管共射极单管放大电路实验原理
共射电路是放大电路中应用最广泛的三极管接法,信号由三极管基极和发射极输入,从集电极和发射极输出。因为发射极为共同接地端,故命名共射极放大电路。
共射电路是放大电路中应用最广泛的三极管接法,信号由三极3极管3种基本电路(接法)(1张)管基极和发射极输入,从集电极和发射极输出。因为发射极为共同接地端,故命名共射极放大电路。
特点
1、输入信号和输出信号反相;
2、有较大的电流和电压增益;
3、一般用作放大电路的中间级。
4、共射极放大器的集电极跟零电位点之间是输出端,接负载电阻.
掌握了解
作为最常用的放大电路,我们必须掌握以下内容1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。
2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。
3、静态工作点的计算、电压放大倍数的计算。
信号传递
上图所示,共射极放大电路所要放大的是交流小信号Vi,Vi通过耦合电容C1以电压的形式加到三极管的B~E之间,以电流的形式通过B~E。电子(负电荷)的传递方向为E~B。Vcc和Rb用来提供B~E接面适当的正向偏压以及可使三极管进入线性工作区的电流。这个部分称为输入回路。Vcc和Rc用来提供B~C接面适当的反向偏压。电子(负电荷)的传递方向为B~C。集电极收集大量电子(负电荷),少数空穴(正电荷)漂移到基极与基极的空穴一起复合掉一部分E向C的电子(负电荷)。被复合掉的基区空穴由基极电源Eb重新补给。由于E的电子浓度大于B,电位小于B,电源Eb在补充空穴的同时带来了从E~B~C的大量电子。三极管完成放大电流作用。放大了的信号电流通过Rc在C极上产生压降。这个压降就是输出端信号电压,是交流,可以通过电容C2耦合出去。Vcc,Rc和三极管CE极构成输出回路。RL是负载电阻。
『叁』 急求:晶体管单管共发射极放大电路实验总结答案
一、通过本次实验,更深入地了解了单管共射放大电路的静态和动态特性,学会了测量、调节静态工作点和动态特性有关参数(增益、输入电阻、幅频特性)的实验和仿真方法,并和理论计算相验证,加强了对理论知识的掌握。 在仿真时熟悉了Multisim软件的使用环境,认识到预习计算和仿真对实验的重要性和指导意义,并学会搭实际电路检查电路的联接和排查错误。二、在单管放大的状态下,管子处于放大状态的时候,可以通过测量基极,集电极,发射极的电流得到以下结论:(1)基极电流和集电极电流之和等于发射极电流;(2)基极电流和发射极电流有一定的正比关系,也就是二者的电流大小的比值在一定范围内不变,也就是基极小的电流变化,在发射极就能有大的电流变化;(3)基极开路时,Iceo非常小,这个值越小越好;(4)要使晶体管能够处于放大状态,必须是发射结正偏,集电结反偏; (3)单管共射放大电路实验扩展阅读:共集电极放大电路具有以下特性 1、输入信号与输出信号同相; 2、无电压放大作用,电压增益小于1且接近于1,因此共集电极电路又有“电压跟随器”之称 ; 3、电流增益高,输入回路中的电流iB<<输出回路中的电流iE和iC; 4、有功率放大作用; 5、适用于作功率放大和阻抗匹配电路。 6、在多级放大器中常被用作缓冲级和输出级。参考资料来源:网络-共集电极放大电路
『肆』 模拟电路实验(晶体管共射极单管放大器)
1.因为晶体管共发射极放大电路属于音频放大电路,或者叫做低频放大电路,这种电路的内频率特性是对容于50HZ-20000HZ之间的频率信号有正常的放大作用。在这个频带以外的频率不能正常放大。或者失去放大作用。1KHZ是音频的中间频率,用这个频率的信号既代表了信号的主要特点有能使放大器工作在正常范围。
信号大小的选择:在几十毫伏--100毫伏之间。
2.单级放大器的放大倍数通常在几倍到几十倍之间,因为三极管的电流放大系数通常在几十倍,所以不可能达到10000倍。出现几倍的情况也属于正常,因为三极管的β低。
『伍』 怎么做晶体管共射极单管放大器的实验
关键是根抄据β、Rc、RL确定大小袭合适的基极偏置电阻Rb,从元增民《模拟电子技术》找到有关设计计算公式
Rb(cr)=β(Rc+Rc//RL)
满足此条件,则集-射极偏置电压应达到Uce=Ucc/(2+Rc/RL)
而最大不失真输出电压幅度可达Uommax=Ucc/(2+Rc/RL)
对附图
Rb=100(1+1//1)=150k
Uce=12V/(2+1/1)=4V
Uommax=12V/(2+1/1)=4V
兄台可以照这个电路用Multisim仿真验证,注意最好选用虚拟晶体管BJN-NPN-VIRTUAL,以将β值设定为100或其他需要数值。
『陆』 单管放大电路分析实验能得到怎样的结论
一、通过本次实验,更深入地了解了单管共射放大电路的静态和动态特性,学会了测量、调节静态工作点和动态特性有关参数(增益、输入电阻、幅频特性)的实验和仿真方法,并和理论计算相验证,加强了对理论知识的掌握。
在仿真时熟悉了Multisim软件的使用环境,认识到预习计算和仿真对实验的重要性和指导意义,并学会搭实际电路检查电路的联接和排查错误。
二、在单管放大的状态下,管子处于放大状态的时候,可以通过测量基极,集电极,发射极的电流得到以下结论:
(1)基极电流和集电极电流之和等于发射极电流;
(2)基极电流和发射极电流有一定的正比关系,也就是二者的电流大小的比值在一定范围内不变,也就是基极小的电流变化,在发射极就能有大的电流变化;
(3)基极开路时,Iceo非常小,这个值越小越好;
(4)要使晶体管能够处于放大状态,必须是发射结正偏,集电结反偏;
(6)单管共射放大电路实验扩展阅读:
共集电极放大电路具有以下特性
1、输入信号与输出信号同相;
2、无电压放大作用,电压增益小于1且接近于1,因此共集电极电路又有“电压跟随器”之称 ;
3、电流增益高,输入回路中的电流iB<<输出回路中的电流iE和iC;
4、有功率放大作用;
5、适用于作功率放大和阻抗匹配电路。
6、在多级放大器中常被用作缓冲级和输出级。
『柒』 实验二 晶体管共射极单管放大器 实验总结答案
Rc越大,电压放大倍数越大、输入电阻不受影响、输出电阻越大。
Ri越大,电压放大倍数越内小、容输入电阻越小、输出电阻不受影响。
静态工作点中电流越大,电压放大倍数越大、输入电阻越小、输出电阻不受影响。但静态工作点太大或太小容易导致三极管进入饱和或截止。
『捌』 晶体管共射极单管放大器实验的结论是什么
基极电流和集电极电流之和等于发射极电流;基极电流和发射极电流有一定的正比关系,也就是二者的电流大小的比值在一定范围内不变,也就是基极小的电流变化,在发射极就能有大的电流变化。
基极开路时,Iceo非常小,这个值越小越好。要使晶体管能够处于放大状态,必须是发射结正偏,集电结反偏。
由于其响应速度快,准确性高,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。
(8)单管共射放大电路实验扩展阅读:
改变外加垂直于半导体表面上电场的方向或大小,以控制半导体导电层(沟道)中多数载流子的密度或类型。它是由电压调制沟道中的电流,其工作电流是由半导体中的多数载流子输运。这类只有一种极性载流子参加导电的晶体管又称单极型晶体管。
与双极型晶体管相比,场效应晶体管具有输入阻抗高、噪声小、极限频率高、功耗小,制造工艺简单、温度特性好等特点,广泛应用于各种放大电路、数字电路和微波电路等。
以硅材料为基础的金属0-氧化物-半导体场效应管(MOSFET)和以砷化镓材料为基础的肖特基势垒栅场效应管(MESFET )是两种最重要的场效应晶体管,分别为MOS大规模集成电路和MES超高速集成电路的基础器件。
『玖』 模电单管共射放大电路实验的问题
第一个 共地是使得每个电路的低电平保持一致,防止零点漂移。第二个 先大致测量再精确,加到电路的输入电压可能由于电路的各种阻抗匹配导致电压值下降