① 刚开始接触PCB热设计,那个PCB方阻是什么意思的呢请教,谢谢!
方块电阻又称膜电阻,是用于间接表征薄膜膜层、玻璃镀膜膜层等样品上的真空镀膜的热红外性能的测量值,该数值大小可直接换算为热红外辐射率。方块电阻的大小与样品尺寸无关,其单位为Siements/sq,后增加欧姆/sq表征方式,该单位直接翻译为方块电阻或者面电阻,用于膜层测量又称为膜层电阻。
方块电阻有一个特性,即任意大小的正方形测量值都是一样的,不管边长是1米还是0.1米,它们的方阻都是一样,这样方阻仅与导电膜的厚度等因素有关,表征膜层致密性,同时表征对热红外光谱的透过能力,方块电阻测量数值愈大,则隔离热红外性能越差,方块电阻测量数值愈小则隔离热红外性能越好,对于建筑行业来讲低辐射玻璃的热红外性能测量的快速测量就必须选用方块电阻测量仪,测量值愈小则建筑材料就愈节能,在建筑材料行业具有很大的作用。
计算方法
方块电阻:Rs=ρ/t(其中ρ为块材的电阻率,t为块材厚度)
或者写成电导率的表达式:Rs = 1/(σt)
这样 在计算块材电阻的时候,我们就可以利用方块电阻乘以长宽比例得到,计算过程与维度无关:
R=Rs*L/W(L为块材长度,W为块材宽度)
方块电阻如何测试呢,可不可以用万用表电阻档直接测试图一所示的材料呢?不可以的,因万用表的表笔只能测试点到点之间的电阻,而这个点到点之间的电阻不表示任何意义。如要测试方阻,首先我们需要在A边和B边各压上一个电阻比导电膜电阻小得多的圆铜棒,而且这个圆铜棒光洁度要高,以便和导电膜接触良好。这样我们就可以通过用万用表测试两铜棒之间的电阻来测出导电薄膜材料的方阻。
如果方阻值比较小,如在几个欧姆以下,因为存在接触电阻以及万用表本身性能等因素,用万用表测试就会存在读数不稳和测不准的情况。这时就需要用专门的用四端测试的低电阻测试仪器,如毫欧计、微欧仪等。测试方法如下:用四根光洁的圆铜棒压在导电薄膜上,如图二所示。四根铜棒用A、B、C、D表示,它们上面焊有导线接到毫欧计上,我们使BC之间的距离L等于导电薄膜的宽度W,至于AB、CD之间的距离没有要求,一般在10--20mm就可以了,接通毫欧计以后,毫欧计显示的阻值就是材料的方阻值。这种测试方法的优点是:(1)用这种方法毫欧计可以测试到几百毫欧,几十毫欧,甚至更小的方阻值,(2)由于采用四端测试,铜棒和导电膜之间的接触电阻,铜棒到仪器的引线电阻,即使比被测电阻大也不会影响测试精度。(3)测试精度高。由于毫欧计等仪器的精度很高,方阻的测试精度主要由膜宽W和导电棒BC之间的距离L的机械精度决定,由于尺寸比较大,这个机械精度可以做得比较高。在实际操作时,为了提高测试精度和为了测试长条状材料,W和L不一定相等,可以使L比W大很多,此时方阻Rs=Rx*W/L,Rx为毫欧计读数。
此方法虽然精度比较高,但比较麻烦,尤其在导电薄膜材料比较大,形状不整齐时,很难测试,这时就需要用专用的四探针探头来测试材料的方阻,如图三所示。
探头由四根探针阻成,要求四根探针头部的距离相等。四根探针由四根引联接到方阻测试仪上,当探头压在导电薄膜材料上面时,方阻计就能立即显示出材料的方阻值,具体原理是外端的两根探针产生电流场,内端上两根探针测试电流场在这两个探点上形成的电势。因为方阻越大,产生的电势也越大,因此就可以测出材料的方阻值。需要提出的是虽然都是四端测试,但原理上与图二所示用铜棒测方阻的方法不同。因电流场中仅少部分电流在BC点上产生电压(电势)。所示灵敏度要低得多,比值为1:4.53。
② 电路板散热的方式有哪些
1、高发热器件加散热器、导热板
2、通过PCB板本身散热
3、采用合理的走线设计实现散热
4.、对于采用自由对流空气冷却的设备,最好是将集成电路(或其他器件)按纵长方式排列,或按横长方式排列。
5.、同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游。
6.、在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其他器件温度的影响。
7、对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局。
8、设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板。空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域。整机中多块印制电路板的配置也应注意同样的问题。
9.、避免PCB上热点的集中,尽可能地将功率均匀地分布在PCB板上,保持PCB表面温度性能的均匀和一致。
10、将功耗最高和发热最大的器件布置在散热最佳位置附近。不要将发热较高的器件放置在印制板的角落和四周边缘,除非在它的附近安排有散热装置。在设计功率电阻时尽可能选择大一些的器件,且在调整印制板布局时使之有足够的散热空间。
11、高热耗散器件在与基板连接时应尽能减少它们之间的热阻。为了更好地满足热特性要求,在芯片底面可使用一些热导材料(如涂抹一层导热硅胶),并保持一定的接触区域供器件散热。
12、器件与基板的连接:
(1) 尽量缩短器件引线长度;
(2)选择高功耗器件时,应考虑引线材料的导热性,如果可能的话,尽量选择引线横段面最大;
(3)选择管脚数较多的器件。
13、器件的封装选取:
(1)在考虑热设计时应注意器件的封装说明和它的热传导率;
(2)应考虑在基板与器件封装之间提供一个良好的热传导路径;
(3)在热传导路径上应避免有空气隔断,如果有这种情况可采用导热材料进行填充。
③ 热插拔的电路设计
热插拔电路设计应用非常广泛,作用是对热插拔的设备的元器件、芯片的一种保护措施。通常热插拔采用对信号进行隔离缓冲处理,采用244,245等器件来处理。并且在输入信号增加限流电阻和0.1uF滤波电容,对于输出信号通常直接由 244,245输出即可。还有,除了过缓冲隔离之外,对于PCI接口等信号,通常还需要控制其上电,这也就是PCI总线的热插拔技术。
普通硬盘热插拔
以前的硬盘磁头不具备自动停靠的功能,在通电状态下磁头是“飞行”在盘片上面的,当系统断电之前,必须用一条叫“Park”的专用命令,来让磁头归位。否则,就有可能因为盘片瞬间停转而磁头来不及归位,造成盘片被磁头“铲伤”。
硬盘只有当读取数据的时候,磁头才会飞行在盘片表面。一读取动作结束,磁头立即自动归位停靠。同时,硬盘都具备延时断电的功能。即当系统供电突然丢失时,硬盘本身的控制器能自动探测到这个变化,然后强迫磁头停止当前读写指令的执行,并使磁头正常归位。这个设计大大加强了硬盘在意外断电情况下的安全系数。 所以,盘片损伤的可能性其实是极低的。但这并不意味着热插拔硬盘是毫无危险的。因为开机状态下带电插拔硬盘,都会产生一个瞬时的冲击电流,过去我们认为这是造成硬盘带电插拔损坏的罪魁祸首。然而事实上,硬盘电源接口电路对这种瞬间电流的变化的宽容度是比较大的,绝大多数时候并不会导致硬盘电路板被烧毁。真正的危险来自于硬盘的数据线!在带电状态下插拔硬盘数据线,数据线上也会产生不正常的瞬间电流和压降,导致多个精密控制芯片被烧毁,这才是真正的“硬盘杀手”。
因此,只要我们能保证插拔电源线和数据线的顺序正确,即“插”硬盘的时候先接数据线,后接电源线;“拔”硬盘的时候正相反,先拔电源线,后拔数据线。这样,硬盘热插拔就不是天方夜谭!
应该感谢微软!是它把Windows操作系统的硬件在线识别和即时禁用功能做得如此完美,才让硬盘热插拔并且即插即用成为可能。首先,Windows系统可以绕过系统BIOS的设置,自行管理所有硬件,这是硬盘即插即用的第一要素。此外,在Windows设备管理器的“操作”菜单中,有一个“扫描检测硬件改动(A)”功能。当硬盘在开机状态下被插到系统中后,运行这个扫描检测功能,就能使新硬盘被操作系统识别并且正常使用。而在开机状态下拔出硬盘前,由于Windows会自动监测和向硬盘写数据,因此必须先将这个设备卸载,以使操作系统停止一切对该硬盘的操作,这时就可以安全地拔下硬盘了。
为验证以上观点,笔者亲手操作了一下,以下是操作步骤:将硬盘的跳线设置到CS(Cable Select,电缆选择)状态,插上硬盘数据线和电源线,在设备管理器的“操作”菜单中扫描检测硬件改动,完成之后,新硬盘即可以开始正常操作了。
热拔的步骤与此类似,先在设备管理器中找到该硬盘选择“卸载”,再将电源线拔下,确定硬盘已经停转后,即可拔下数据线。至此,硬盘被彻底热拔除。
由于是带电插拔,瞬间电流和电压的变化,有可能导致系统死机,但热插拔硬盘经笔者的长期操作验证从未导致过硬盘烧毁。不过这毕竟是非常规的硬盘安装和使用方法,硬盘存在热插拔和即插即用的可行性,但普通用户最好不要轻易模仿。
一般的外设,像软驱、光驱甚至是硬盘都可以使用热插拔,在安装时记住要先插数据线,后插电源线,拆下时刚好相反,只要您注意步骤正确,完全就可以把热插拔玩弄于股掌之间。
不过在硬盘热插拔时要注意,一定要使用同一个型号的硬盘,因为您硬盘的型号数据还存储在主板的BIOS里,这个是无法修改的,而软驱、光驱就没有这个问题了,您可以大胆的使用热插拔。
④ pcb板的热学性能
由于材料及其制品都在一定的温度环境下使用,在使用过程中,将对不同回的温度作出反映,表现出不同答的热物理性能,这些热物理性能就称为材料的热学性能。 材料的热学性能有:热容、热膨胀、热传导等。
PCB线路板通过一系列检查、测试和老化试验等可保证PCB长期而可靠地工作着。
PCB线路板产品既便于各种元件进行标准化组装,又可以进行自动化、规模化批量生产。同时,PCB线路板和各种元件组装部件还可组装形成更大部件、系统,直至整机。
(4)电路板热设计扩展阅读:
PCB这种电路板的两面都有布线,不过要用上两面的导线,必须要在两面间有适当的电路连接才行。这种电路间的“桥梁”叫做导孔(via)。
导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。因为双面板的面积比单面板大了一倍,双面板解决了单面板中因为布线交错的难点(可以通过导孔通到另一面),它更适合用在比单面板更复杂的电路上。
⑤ 印制电路板设计过程中如何进行散热设计,地线设计和电磁兼容设计
电路板设计过程
要求是什么,
任务是?
⑥ 如何实现板级电路热设计
板上元器件合理布置、PCB使用更大面积的铜、使用导热系统更好的材料制造电路板、给功耗大的期间加装散热器、加风扇等等
⑦ 做PCB的热分析、热设计、热测试方面的工作,需要阅读哪些资料或书籍,有没有好的推荐!
给你推荐两本书,我都看过,很受用。
《传热学》,西安交通大学出版社,只要看懂内导热对流辐射的基本原理及公式容、并且会利用简单的经验公式分析问题即可。
《电子设备热设计级分析技术》,找到与你的工作相关的章节学习即可。
⑧ PCB热设计的检验方法
(一) PCB热设计的检验方法:热电偶
热电现象的实际应用当然是利用热电偶测量温度。电子能量与散射之间的复杂关系,使得不同金属的热电势彼此不同。既然热电偶是这样一种器件,它的两个电极之间的热电势之差是热电偶热端和冷端之间温差的指示,如果所有金属和合金的热电势不一样,就不可能使用热电偶来测量温度了。这一电势差称为塞贝(SCeBeek)效应。一对不同材料的导体A与B,其一个接点维持在温度T1,两个自由端维持在一个较低的温度To。接点和自由端均位于温度均匀的区域中,而两根导体都经受同样的温度梯度。为了能够测量自由端A和B之间的热电势差,一对同样材料的导体C,在温度to处分别与导体A与B相连,接到温度为T1的检测器。十分明显,塞贝克效应决不是连接点上的现象,而是与温度梯度有关的现象。为了正确理解热电偶的性能,这一点无论怎么强调也不过分。
热电偶测温的使用范围非常广泛,所遇到的问题也是多种多样。因此,本章只能涉及热电偶测温的若干重要方面。热电偶仍然是许多工业中温度测量的主要手段之一,尤其是在炼钢和石油化学工业中更是如此。但是,随着电子学的进展,电阻温度计在工业中的应用也越来越广泛了,热电偶已不再是惟一的最重要的工业温度计了。
电阻温度计和热电偶相比(电阻测量和热电势测量相比),其优点在于两种元件工作原理上的根本差别。电阻温度计指示电阻元件所在区域的温度,它与引线及沿着引线的温度梯度无关。但是,热电偶是通过测量冷端两电极之间的电位差来测量冷端与热端间的温度差。对于一支理想的热电偶,电位差只与两端的温度差有关。但是,对于一支实际热电偶,在温度梯度处电偶丝的某种不均匀性也会引起电位差的变化,这仍然是限制热电偶准确度的一个因素。
七种国际采用的热电偶,即所谓“标准化热电偶”。列举了每一电极的名义成分、每种合金的通用商品名称以及热电偶的字母代号。这些字母代号最初由美国仪器学会(InstrumentSoCietyofAmeriCan)所引入,但是现在已为全世界所广泛采用。这些字母代号可以作为各种类型。
(二) PCB热设计的检验方法:温升测试
对于PCB热设计,我们必须在后续的工作中来实际验证,以确定各芯片的工作温度都在正常范围以内。
一般都是选取发热量比较大的芯片和元器件来测试它的最大负荷的工作温度,也就是看长时间满载时的工作温度状况。在测试前由设计人员确定发热量大的芯片和元器件,另外对于芯片的最高温度点同样要求提供。
温度测量使用热偶线,线长一般是选2m左右,把线头的连接点放置于所要测量点的位置,并用胶带固定(胶带必须是耐高温且高黏性的,以确保高温不脱离和温度测量数据的准确性)。同时,要注意线不能折,否则会影响测试精度。文章转自深圳宏力捷!
⑨ 哪些电子器件可以当做热源对电路板进行加热
这热源设计涉及整体产品功能和安全性,不能片面解决低温而冒险,需要看整体设计才能判定温度设计;