導航:首頁 > 保修維修 > 32t螺旋千斤頂如何翻新

32t螺旋千斤頂如何翻新

發布時間:2022-09-19 04:57:57

1. 選購到合適的螺旋千斤頂後,該如何正確使用

螺旋千斤頂的噸位:3.2噸、5噸、8噸、10噸、16噸、20噸、25噸、32噸、50噸、100噸。螺旋千斤頂 又稱機械式千斤頂,是由人力通過螺旋副傳動,螺桿或螺母套筒作為頂舉件。普通螺旋千斤頂靠螺紋自鎖作用支持重物,構造簡單,但傳動效率低,返程慢。自降螺旋千斤頂的螺紋無自鎖作用,裝有制動器。放鬆制動器,重物即可自行快速下降,縮短返程時間,但這種千斤頂構造較復雜。螺旋千斤頂能長期支持重物,最大起重量已達 100噸,應用較廣。下部裝上水平螺桿後,還能使重物作小距離橫移。使用原理:機械千斤頂是手動起重工具種類之一,其結構緊湊,合理的利用搖桿的擺動,使小齒輪轉動,經一對圓錐齒輪合運轉,帶動螺桿旋轉,推動升降套筒,從而重物上升或下降。使用方法: 1.使用前必須檢查千斤頂是否正常,各部件是否靈活,加註潤滑油,並正確估計重物的重量,選用適當噸位的千斤頂,切忌超載使用。 2.調整搖桿上的撐牙方法,先用手直接按順時針方向轉動搖桿,使升降套筒快速上升頂重物。 3.將手柄插入搖桿孔內,上下往返搬動手柄,重物隨之上升。當升降套筒上出現紅色警戒線時應該立即停止搬動手柄。如需下降時撐牙調至反方向,重物便開始下降。注意事項: 1.經常保持機體表面清潔,定期檢查內部結構是否完好,使搖桿內小齒輪靈活可靠及升降套筒升降自如。 2.升降套筒與殼體間的摩擦表面必須隨時上油,其它注油孔應該定期加油潤滑。 3.為了考慮到使用中安全,切忌超載,帶病工作,不宜作多台使用,以免發生危險。

2. 螺旋千斤頂的設計

一、設計任務書
設計帶式輸送機的傳動裝置。
工作條件:帶式輸送機連續單向運轉,工作平穩無過載,空載起動,輸送帶速度允許誤差±5% ;兩班制工作(每班按8小時計算),使用期限10年,小批量生產。
具體的設計任務包括:
(1)傳動方案的分析和擬定;
(2)電動機的選擇,傳動裝置的運動和動力參數的計算;
(3)傳動零件的設計(帶傳動、單級齒輪傳動);
(4)軸和軸承組合設計(軸的結構設計,軸承組合設計,低速軸彎、扭組合強度校核,低速軸上軸承壽命計算);
(5)鍵的選擇及強度校核(低速軸上鍵的校核);
(6)聯軸器的選擇;
(7)減速器的潤滑與密封;
(8)減速器裝配草圖俯視圖設計(箱體、附件設計等);
二、傳動方案的擬定及電動機的選擇
已知條件:運輸帶的有效拉力 F=3000N,傳送帶的速度為 v=2m/s,滾筒直徑為 D=300mm。連續單向運轉,工作平穩無過載。
1、 傳動方案的擬定
採用V帶傳動及單級圓柱齒輪傳動。
(1)、類型:採用Y系列三相非同步電動機
(2)、容量選取:工作機有效功率:
Pw=FV/1000=3000 2/1000=6KW
設 :V型帶效率
:滾動軸承效率
:閉式齒輪傳動(設齒輪精度為8級)效率
:彈性聯軸器效率
:捲筒軸效率
ŋ6: 滾筒效率
查表得 ŋ2=0.99 ŋ3=0.97 ŋ4=0.97 ŋ5=0.98
ŋ6=0.96
傳動裝置總效率為:
ŋ總= ŋ1 ŋ 2^2 ŋ3 ŋ4 ŋ5 ŋ6
=0.96×0.99^2×0.97×0.97×0.98×0.96=0.83
電動機所需功率為:
Pd=FV/1000×0.83=7.23KW
查《機械設計基礎課程設計》附錄二, 選取電動機的額定功率 Pe=7.5kW
(3)、確定電動機轉速
滾筒轉速為:
=60×1000V/πD
=60×1000×2/π×300=127.4r/min
因帶傳動的傳動比2-4為宜,齒輪傳動的傳動比3-5為宜,則
最大適宜傳動比為
最小適宜傳動比為
則電動機轉速可選范圍為:
nd=i =127.4×(6~20)=764.4~2548 r/min
可選的同步轉速有
1000r/min 1500r/min 3000r/min
三種,三種方案的總傳動比分別為:
i =7.61 i =11.3 =22.76
考慮到電動機轉速越高,價格越低,尺寸越小,結構更緊湊,故選用同步轉速為 的電動機。
查《機械設計基礎課程設計》附錄二,得此電動機的型號為 Y132M-4。
電動機型號:Y132M-4
額定功率 :7.5
滿載轉速 :1440
啟動轉矩 :2.2
最大轉矩 :2.2
由電動機具體尺寸參數 ,得
中心高: 132mm
外型尺寸 : 515*(270/2+210)315
底腳安裝尺寸 :216 178
地腳螺孔直徑 :12
軸外伸尺寸 :38 80
裝鍵部位尺寸 :10 33 38
2、 計算傳動裝置的總傳動比並分配傳動比
(1)、總傳動比: i總=11.3
(2)、分配傳動比:取帶傳動比 i帶=2.8,則減速器傳動比 i齒=11.3/2.8=4。
三、 傳動裝置的運動和動力參數計算
1、各軸轉速計算
nⅠ= /i帶=1440/2.8=514.286 r/min
nⅡ=nⅠ/i齒=514.286/4.0=127.4 r/min
滾筒n筒=nⅡ=127.4 r/min
2、各軸輸入功率計算
PⅠ= Pd ŋ帶=7.23×0.96=6.94kw
PⅡ=PⅠŋ2=6.94×096=6.66 kw
3、 各軸輸入轉矩計算
Td=9550×Pd/nⅠ=9550×7.23/1440=47.95Nm
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87Nm
TⅡ=9550×PⅡ/nⅡ=9550×6.66/172.4=499.286Nm
四、傳動零件的設計計算
(一)、V帶及帶輪的設計
已知條件:電動機型號為 Y132M-4 中心高132mm,電動機的輸出功率為 7.5kw。滿載轉速為 1440r/min。每天運轉時間為16小時(八小時每班,兩班制),I軸轉速為 514.286 r/min
齒輪傳動傳動比:
i=nⅠ/nⅡ=4
(1) 、確定計算功率 每天運轉時間為16小時的帶式輸送機的工況系數 =1.2。則 = Pe=1.2×7.5=9 kw
(2)、 選擇V帶型號
查表知選A型帶
並考慮結構緊湊性等因素,初選用窄V帶SPA型。
(3)、確定帶輪的基準直徑 和
I、初選小帶輪直徑
一般取 ,並取標准值。查表取小帶輪直徑為125m m。機中心高為 H=132mm,由 ,故滿足要求。
II、驗算帶速
V=пd1n1/60×1000=3.14×125×1440/60×1000
=9.42m/s
一般應使 ,故符合要求。
III、計算大帶輪直徑
要求傳動比較精確,考慮滑動率 ,取 =0.01
有 =(1- )i帶 =(1-0.01)×125×2.825=346.959mm
取標准值 =350mm
則傳動比 i=2.8
對減速器的傳動比進行修正,得減速器的傳動比 i=4
從動輪轉速為 n2=127.4r/min
IV、確定中心距和帶長
【1】 由式 ,可
得332.5 mm≤a≤950 mm
取初步中心距 =750mm
(需使 a》700)
【2】 初算帶長
Dm=(D1+D2)/2=237.5 mm
Δ=(D2-D1)/2=112.5mm
L= +2a+Δ /2=2402mm
選取相近的標准長度 Ld=2500mm
【3】 確定中心距
實際中心距
a≈ +(Ld-L) /2=750+(2500-2402)/2
=800mm
V、驗算小輪包角
【1】計算單根V帶的許用功率
由SPA帶的 =125mm, n=1440r/min
i帶=2.8
得 =1.93kw
又根據SPA帶 Δ =0.17kw
又由 Ld=2500mm
查表,長度系數
=180°-Δ×60°/a=164.7°
同時由 =164.7°得包角系數 Ka=0.964
【2】、計算帶的根數z
Z=Pc/(P0+ΔP0)Kl Ka=4.079
取z=5
SPA帶推薦槽數為1-6,故符合要求。
VI、 確定初拉力
單位長度質量 q=0.1kg/m
單根帶適宜拉力為:=161.1N
VII、 計算壓軸力
壓軸力為:
FQ=2z sin( a1/2)= 1596.66N
VIII、張緊裝置
此處的傳動近似為水平的傳動,故可用調節中心距的方案張緊。
VIIII、帶輪的結構設計
已知大帶輪的直徑da2=350mm,小帶輪的直徑為 da1=125mm。對於小帶輪,由於其與電動機輸出轉軸直接相連,故轉速較高,宜採用鑄鋼材料,
又因其直徑小,故用實心結構。
對於大帶輪,由於其轉速不甚高,可採用鑄鐵材料,牌號一般為HT150或HT200,
又因其直徑大,故用腹板式結構。

(二)、齒輪設計
已知條件:已知輸入功率P1=6.94kw ,轉速為 n1=514.286 r/min,齒數比 u=4,單向運轉,載荷平穩,每天工作時間為16小時,預計壽命為10年。
(1)、選定齒輪類型、材料、熱處理方式及精度等級
A、採用直齒圓柱齒輪傳動。
B、帶式輸送機為一般機械,速度不高,選用8級精度。
C、查表 小齒輪材料為45鋼,調質處理,平均齒面硬度為250HBS。
大齒輪材料為45鋼,正火處理,平均齒面硬度為200 HBS。
(2)、初步計算齒輪參數
因為是閉式齒面齒輪傳動,故先按齒面接觸疲勞強度設計,按齒根彎曲疲勞強度校核。
小齒輪分度圓的直徑為
A、 Ad==85
B、 計算齒輪轉矩
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87 Nm
C、 取齒寬系數
齒數比為u=4
D、 取 ,則大齒輪的齒數: =84
E、 接觸疲勞極限
[σH]lim =610MPa, [σH]lim =500MPa
應力循環次數
N1=60×514.286×10×300×16=1.48×10
N2=N1/u=3.7×10
查圖得接觸疲勞壽命極限系數為 =1, =1.1
取安全系數SH=1
則接觸應力:
[σ ] =[σ ]lim1ZN1/SH=610×1/1=610MPa
[σ ] =[σ ]lim2ZN2/SH=550MPa
取 [σ ]=550 MPa

則 =85
>=66mm 取d1=70mm
(3)、確定傳動尺寸
1、計算圓周速度
v=pd1n1/60*1000=1.77m/s
2、計算載荷系數
查表得使用系數
由 v=1.77 ,8級精度,查圖得動載系數
查表得齒間載荷分配系數
查表得齒向載荷分布系數 (非對稱布置,軸剛性小)

3、 確定模數: m=d1/z1=70/21=3.33mm,取標准模數為 .5
4、計算中心距:
a=m(z1+z2)/2=183.75mm
圓整為a=185mm
5、精算分度圓直徑
d1=mz1=3.5×21=73.5mm
d2=mz2=3.5×84=294mm
6、計算齒寬
b1= d1=1.1×73.5=80mm
取 b2=80mm, b1=85mm
7、計算兩齒輪的齒頂圓直徑、齒根圓直徑
小齒輪:
齒頂圓直徑:
da1=m(z1+ha*)=3.5×(21+1)=77mm
齒根圓直徑:
df1=m(z1-2ha*-2c)=3.5×(21-2×1-2×0.25)=64.75mm
大齒輪:
齒頂圓直徑:
da2=297.5mm
齒根圓直徑:
df2=285.25mm
(4)、校核齒根彎曲強度

式中各參數的含義
1、 的值同前
2、查表齒形系數 Ya1=2.8 Ya2=2.23
應力校核系數 Ysa1=1.55 Ysa2=1.77
4、許用彎曲應力
查圖6-15(d)、(c)的彎曲疲勞強度系數為
=1

查圖得彎曲疲勞壽命系數
,取安全系數 ,故有KFN1=0.85 KFN2=0.8
滿足齒根彎曲強度。
(5)結構設計
小齒輪的分度圓直徑為 ,故可採用實心結構
大齒輪的分度圓直徑為 ,故應採用腹板式結構
(6)、速度誤差計算
經過帶輪和齒輪設計後,
滾筒的實際轉速n= /i= =127.57r/min
滾筒理論要求轉速為 127.4r/min
則誤差為
故符合要求。
五、軸的設計計算
(一)、低速軸的設計校核
低速軸的設計
已知:輸出軸功率為 =6.66KW,輸出軸轉矩為 =499.286Nm,輸出軸轉速為 =127.4r/min,壽命為10年。
齒輪參數: z1=21, z2=84,m=3.5,
1、 選擇軸的材料
該軸無特殊要求,因而選用調質處理的45鋼,查得
2、 求輸入軸的功率,轉速及扭矩
已求得 ,PI=6.94KW , TI=128.872Nm, nI= 514.286r/min
3、 初步估算最小軸徑
最小軸徑
當選取軸的材料為45鋼,C取110
=
輸出軸的最小直徑顯然是安裝聯軸器處軸的直徑 。
考慮到軸上開有鍵槽對軸強度的影響,軸徑需增大5%。
d=(1+5%)41.3=43.4mm
則d=45mm
為使所選直徑 與聯軸器的孔徑相適應,故需同時選擇聯軸器。
聯軸器的扭矩 ,查表得 ,又TII=499.286Nm,則有
Tc=kT=1.5 499.286Nm=748.9Nm
理論上該聯軸器的計算轉矩應小於聯軸器的公稱轉矩。
從《機械設計基礎課程設計》 查得採用 型彈性套柱聯軸器。
該聯軸器所傳遞的公稱轉矩
取與該軸配合的半聯軸器孔徑為 d=50mm,故軸徑為d1=45mm
半聯軸器長 ,與軸配合部分長度 L1=84mm。
軸的結構設計
裝聯軸器軸段I-II:
=45mm,因半聯軸器與軸配合部分的長度為 ,為保證軸端擋板壓緊聯軸器,而不會壓在軸的端面上,故 略小於 ,取 =81mm。
(2)、裝左軸承端蓋軸段II-III:
聯軸器右端用軸肩定位,取 =50mm,
軸段II-III的長度由軸承端蓋的寬度及其固定螺釘的范圍(拆裝空間而定),可取 =45mm.
(3)、裝左軸承軸段III-VI:
由於圓柱斜齒輪沒有軸向力及 =55,初選深溝球軸承,型號為6211,其尺寸為
D×d×B=100×55×21,故 =55。
軸段III-VI的長度由滾動軸承的寬度B=21mm,軸承與箱體內壁的距離s=5~10(取 =10),箱體內壁與齒輪距離a=10~20mm(一般取 )以及大齒輪輪轂與裝配軸段的長度差(此處取4)等尺寸決定:
L3=B+s+a+4=21+10+14+4=49mm
取L3=49mm。
(4)、裝齒輪軸段IV-V:
考慮齒輪裝拆方便,應使d4>d3=55mm, 軸段IV-V的長度由齒輪輪轂寬度 =80mm決定,取 =77mm。
(5)、軸環段V-VI:
考慮齒輪右端用軸環進行軸向定位,取d5=70mm。
軸環寬度一般為軸肩高度的1.4倍,即
=1.4h=10mm。
(6)、自由段VI-VII:
考慮右軸承用軸肩定位,由6211軸承查得軸肩處安裝尺寸為da=64mm,取d6=60mm。
軸段VI-VII的長度由軸承距箱體內壁距離 ,軸環距箱體內壁距離 決定,則 =19mm。
(7)、右軸承安裝段VII-VIII:
選用6211型軸承,d7=55mm,軸段VII-VIII的長度由滾動軸承寬度B=21mm和軸承與箱體內壁距離決定,取 。
軸總長為312mm。
3軸上零件的定位
齒輪、半聯軸器與軸的周向定位均用平鍵連接。
按 =45mm,由手冊查得平鍵剖面 ,鍵槽用鍵槽銑刀加工,長為70mm。
半聯軸器與軸的配合代號為
同理由 =60mm,選用平鍵為10×8×70,為保證良好的對中性,齒輪輪轂與軸的配合代號為 ,滾動軸承與軸的周向定位是靠過盈配合來保證的,此處選 。
4考慮軸的結構工藝性
軸端倒角取 .為便於加工,齒輪、半聯軸器處的鍵槽分布在同一母線上。
5、軸的強度驗算
先作出軸的受力計算簡圖,如圖所示,取集中載荷作用在齒輪的中點,
並找出圓錐滾子軸承的支反力作用點。由表查得代號為6211軸承 ,B=21mm。則
L1=41.5+45+21/2=97mm
L2=49+77/2-21/2=77mm
L3=77/2+10+19+31-21/2=88mm
(1)、計算齒輪上的作用力
輸出軸大齒輪的分度圓直徑為
d2=294mm,
則圓周力

徑向力

軸向力
Fa=Ft tan =Ft tan 0°=0
(2)、計算軸承的支反力
【1】、水平面上支反力
R =Ft L3/(L2+L3)=
R =FtL2/(L2+L3)=
【2】、垂直面上支反力
【3】、畫彎矩圖
截面C處的彎矩
a、 水平面上的彎矩

b、 垂直面上的彎矩
c、 合成彎矩M
d、 扭矩
T=T =499286Nmm

e、 畫計算彎矩
因單向運轉,視扭矩為脈動循環, ,則截面B、C處的當量彎矩為

=299939Nmm
f、 按彎扭組合成應力校核軸的強度可見截面C的當量彎矩最大,故校核該截面的強度

查表得 ,因 ,故安全。
A截面直徑最小,故校核其強度

查表得 ,因 ,故安全。
g、 判斷危險截面
剖面A、B、II、III只受扭矩,雖有鍵槽、軸肩及過渡配合等所引起的應力集中均將削弱軸的疲勞強度,但由於軸的最小直徑是按扭轉強度較為寬裕地確定的,所以剖面A、B、II、III均無需校核。
從應力集中對軸的疲勞強度的影響來看,剖面IV和V處過盈配合所引起的應力集中最嚴重;從受載的情況看,剖面C處 最大。剖面V的應力集中的影響和剖面IV的相近,但剖面V不受扭矩作用,同時軸徑也比較大,故不必作強度校核。剖面C上雖然 最大,但應力集中不大(過盈配合及鍵槽引起的應力集中均在兩端),而且這里軸的直徑最大,故剖面C也不必校核。剖面VI顯然更不必校核,又由於鍵槽的應力集中系數比過盈配合的小,因而該軸只須校核IV既可。

(二)、高速軸的設計校核
高速軸的設計
已知:輸入軸功率為PⅠ=6.94 kw ,輸入軸轉矩為TⅠ= 128.87Nm
,輸入軸轉速為nⅠ=514.286 r/min,壽命為10年。
齒輪參數: z1=21,z2=84,m=3.5, 。
1、選擇軸的材料
該軸無特殊要求,因而選用調質處理的45鋼,由表查得
1、 求輸出軸的功率 ,轉速 及扭矩 。
已求得 =127.4 r/min
=6.66kw
=499.286Nm
初步估算最小軸徑
最小軸徑 d min=
由表可知,當選取軸的材料為45鋼,C取110
d min=26.2 mm
此最小直徑顯然是安裝大帶輪處軸的直徑 。
考慮到軸上開有鍵槽對軸強度的影響,軸徑需增大5%。
則 d min=1.05 26.2=27.5mm,取 =28 mm
2、 軸的結構設計
(1)、裝帶輪軸段I-II:
=28 mm,軸段I-II的長度根據大帶輪的輪轂寬度B決定,已知 =60mm,為保證軸端擋板壓緊帶輪,而不會壓在軸的端面上,故 略小於 ,故取 =57mm。
(2)、裝左軸承端蓋軸段II-III:
聯軸器右端用軸肩定位,取 ,軸段II-III的長度由軸承端蓋的寬度及其固定螺釘的范圍(拆裝空間而定),可取
(3)、裝左軸承軸段III-IV:
由於圓柱直齒輪無軸向力及 ,初選深溝球軸承,型號6207,其尺寸為 , 。
軸段III-VI的長度由滾動軸承的寬度,滾動軸承與箱體內壁距離 ,等尺寸決定: 。
(4)、間隙處IV-V:
高速軸小齒輪右緣與箱體內壁的距離 。
取 ,
(5)、裝齒輪軸段V-VI:
考慮齒輪裝拆方便,應使 ,取 ,軸段V-VI的長度由齒輪輪轂寬度B=80mm決定,取 。
(6)、軸段VI-VII:
與軸段IV-V同。 。
(7)、右軸承安裝段VII-VIII:
選用6207型軸承, B=17mm ,軸VII-VIII的長度取
軸總長為263mm。
3、 軸上零件的定位
小齒輪、帶輪與軸的周向定位均用平鍵連接。
按 =28mm,由手冊查得平鍵剖面 ,鍵槽用鍵槽銑刀加工,長為45mm。
帶輪與軸的配合代號為 。同理由 ,選用平鍵為 ,為保證良好的對中性,齒輪輪轂與軸的配合代號為 ,滾動軸承與軸的周向定位是靠過盈配合來保證的,此處選 。
4、 考慮軸的結構工藝性
軸端倒角取 。
為便於加工,齒輪、帶輪處的鍵槽分布在同一母線上。
7、軸的強度驗算
先作出軸的受力計算簡圖,如圖所示,取集中載荷作用在齒輪的中點,並找出圓錐滾子軸承的支反力作用點。查《機械設計課程設計指導書》得代號為6207的深溝球軸承 a=17mm,則
L1=57/2+50+17/2=87mm
L2=17/2+12+10+80/2=70.5mm
L3=17/2+12+10+80/2=70.5mm
(1)、計算齒輪上的作用力
輸出軸小齒輪的分度圓直徑為
d1=mz1=3.5 21=73.5mm
則圓周力

徑向力

軸向力 Fa=0
(2)、計算軸承的支反力
【1】、水平面上支反力
RHA=FtL3/(L2+L3)=1/2Ft=1753.4N
RHB=FtL2/(L2+L3)= 1/2Ft=1753.4N
【2】、垂直面上支反力

RVA=3220N
RVB= =347N
【3】、截面C處的彎矩
1、 水平面上的彎矩

2、 垂直面上的彎矩

3、 合成彎矩M

4、 扭矩
T= TⅠ= 128.87Nm
5、 計算彎矩
因單向運轉,視扭矩為脈動循環, ,則截面C、A、D處的當量彎矩為

6 、 按彎扭組合成應力校核軸的強度
可見截面A的當量彎矩最大,故校核該截面的強度

查表得 ,因 ,故安全。
截面D的直徑最小,故校核該截面的強度

因 ,故安全。

5、 判斷危險截面
剖面A、B、II、III只受扭矩,雖有鍵槽、軸肩及過渡配合等所引起的應力集中均將削弱軸的疲勞強度,但由於軸的最小直徑是按扭轉強度較為寬裕地確定的,所以剖面A、B、II、III均無需校核。
從應力集中對軸的疲勞強度的影響來看,剖面IV和V處過盈配合所引起的應力集中最嚴重;從受載的情況看,剖面C處 最大。剖面V的應力集中的影響和剖面IV的相近,但剖面V不受扭矩作用,同時軸徑也比較大,故不必作強度校核。剖面C上雖然 最大,但應力集中不大(過盈配合及鍵槽引起的應力集中均在兩端),而且這里軸的直徑最大,故剖面C也不必校核。剖面VI顯然更不必校核,又由於鍵槽的應力集中系數比過盈配合的小,因而該軸只須校核IV既可。

六、鍵連接的校核計算
鍵連接設計
I、 帶輪與輸入軸間鍵連接設計
軸徑 ,輪轂長度為 ,查手冊,選用A型平鍵,其尺寸為 。
現校核其強度:
, , 。

查手冊得 ,因為 ,故滿足要求。
II、 小齒輪與輸入軸間鍵連接設計
軸徑 d=50mm,輪轂長度為 ,查手冊,選用A型平鍵,其尺寸為 .
現校核其強度:
TI=128872Nmm, , 。

查手冊得 ,因為 ,故滿足要求。
鍵連接設計
III、 大齒輪與輸出軸間鍵連接設計
軸徑d=60mm,輪轂長度為 ,查手冊,選用A型平鍵,其尺寸為
現校核其強度:
TII=499.286 Nm, , 。

查手冊得 ,因為 ,故滿足要求。
IV、 半聯軸器與輸出軸間鍵連接設計
軸徑 ,半聯軸器的長度為 ,查手冊,選用A型平鍵,其尺寸為 .
現校核其強度:
, , 。

查手冊得 ,因為 ,故滿足要求。
七、 滾動軸承的選擇及壽命計算
滾動軸承的組合設計及低速軸上軸承的壽命計算
已知條件:
採用的軸承為深溝球軸承。
一、滾動軸承的組合設計
1、滾動軸承的支承結構
輸出軸和輸入軸上的兩軸承跨距為H1=155mm,H2=150mm ,都小於350mm。且工作狀態溫度不甚高,故採用兩端固定式支承結構。
2、滾動軸承的軸向固定
軸承內圈在軸上的定位以軸肩固定一端位置,另一端用彈性擋圈固定。
軸承外圈在座孔中的軸向位置採用軸承蓋固定。
3、滾動軸承的配合
軸承內圈與軸的配合採用基孔制,採用過盈配合,為 。
軸承外圈與座孔的配合採用基軸制。
4、滾動軸承的裝拆
裝拆軸承的作用力應加在緊配合套圈端面上,不允許通過滾動體傳遞裝拆壓力。
裝入時可用軟錘直接打入,拆卸時藉助於壓力機或其他拆卸工具。
5、滾動軸承的潤滑
對於輸出軸承,內徑為d=55mm,轉速為n=127.4 ,則
,查表可知其潤滑的方式可為潤滑脂、油浴潤滑、滴油潤滑、循環油潤滑以及噴霧潤滑等。
同理,對於輸入軸承,內徑為35,轉速為514.286 r/min
,查表可知其潤滑的方式可為潤滑脂、油 浴潤滑、滴油潤滑、循環油潤滑以及噴霧潤滑等
6、滾動軸承的密封
對於輸出軸承,其接觸處軸的圓周速度

故可採用圈密封。
二、低速軸上軸承壽命的計算
已知條件:
1軸承 ,

2軸承

軸上的軸向載荷為0徑向載荷為
查表得 ,則軸承軸向分力
Fs1=Fr1/2Y=567N
Fs2=Fr2/2Y=496N
易知此時
Fs1 > Fs2
則軸承2的軸向載荷

軸承1軸向載荷為
.
且低速軸的轉速為127.4
預計壽命 =16 57600h
I、計算軸承1壽命
6、 確定 值
查《機械設計基礎課程設計》表,得6207基本動荷 ,基本額定靜載荷 。
7、 確定e值
對於深溝球軸承,則可得 e=0.44
8、 計算當量動載荷P

<e
由表查得 ,則

9、 計算軸承壽命
由 =
查可得 ,取 ;查表可得 (常溫下工作);6207軸承為深溝球軸承,壽命指數為 ,則
>
故滿足要求。
II、計算軸承2壽命
1、確定 值
查《機械設計基礎設計》,得6211型軸承基本額定動載荷 ,基本額定靜載荷 。
2、 確定e值
對於深溝球軸承6200取,則可得e=0.44
4、 計算當量動載荷P


由表10-5查得 ,則
P=Fr2=1687N
5、 計算軸承壽命

查表10-7,可得 ,取 ;查表10-6可得 (常溫下工作);深溝球軸承軸承,壽命指數為 ,則
> ,故滿足要求。
八、 聯軸器的選擇
與低速軸軸端相連的半聯軸器為彈性套柱銷聯軸器,型號為 ,其公稱轉矩為 ,而計算轉矩值為:
,故其強度滿足要求。
九、箱體結構設計
箱體採用灰鑄鐵鑄造而成,採用剖分式結構,由箱座和箱蓋兩部分組
成,取軸的中心線所在平面為剖分面。
箱體的強度、剛度保證
在軸承座孔處設置加強肋,做在箱體外部。外輪廓為長方形。
機體內零件的密封、潤滑
低速軸上齒輪的圓周速度為:

由於速度較小,故採用油池浸油潤滑,浸油深度為:

高速軸上的小齒輪採用濺油輪來潤滑,利用濺油輪將油濺入齒輪嚙合處進行潤滑。
3、機體結構有良好的工藝性.
鑄件壁厚為8mm,圓角半徑為R=5。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到傳動零件嚙合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M8螺釘緊固。
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 定位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
F 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.

總結:機箱尺寸

名稱 符號 結構尺寸/mm
箱座壁厚
8
箱蓋壁厚
8
箱座凸緣厚度
12
箱蓋凸緣厚度
12
箱底座凸緣厚度
20
箱座上的肋厚
7
箱蓋上的肋厚
7
軸承旁凸台的高度
39
軸承旁凸台的半徑
23
軸承蓋的外徑
140/112



釘 直徑
M16
數目
4
通孔直徑
20
沉頭座直徑
32
底座凸緣尺寸
22
20



栓 軸承旁連接螺栓直徑
M12
箱座的連接螺栓直徑
M8
連接螺栓直徑
M18
通孔直徑
9
沉頭座直徑
26
凸緣尺寸 15
12
定位銷直徑
6
軸承蓋螺釘直徑
M8A
視孔蓋螺釘直徑
M6
吊環螺釘直徑
M8
箱體內壁至軸承座端面距離
55
大齒輪頂圓與箱體內壁的距離
12
齒輪端面與箱體內壁的距離
15

十、潤滑與密封
滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定
十一、設計小結
十二、參考資料
1《畫法幾何及工程制圖 第六版》朱輝、陳大復等編 上海科學技術出版社
2、《機械設計基礎課程設計》 陳立德主編 高等教育出版社
3、《機械設計計算手冊 第一版》王三民主編 化學工業出版社
4、《機械設計 第四版》邱宣懷主編 高等教育出版社

我的設計作業F=3000N V=2m/s D=300mm

3. 隨車千斤頂怎麼用圖解

隨車千斤頂分為齒條千斤頂和螺旋千斤頂,而齒條千斤頂分為人字形結構和菱形結構兩種。這幾種的共同特點是體積小,佔用空間小,適合放置在車尾箱中。

1、人字形結構千斤頂

人字形結構千斤頂,這種結構的齒條千斤頂承重比較低,因此主要配備在小型車輛上。操作如圖所示。

(3)32t螺旋千斤頂如何翻新擴展閱讀:

千斤頂的使用注意事項

1、一般千斤頂的工作介質為YB-N32液壓油,環境溫度低於10℃時,可改用YB-N22液壓油,環境溫度高於40℃時,可改用YB-N46液壓油。

2、工作中油箱的液面應始終保持在油標的中心線上,以防油泵吸空。加油時,應用120目濾油網濾去新油中雜質。經常使用時,每2個月清洗一次濾油器,半年清洗一次油箱,同時更換新油。

3、千斤頂油泵正常工作溫度為10~50℃。油溫過高,需採取冷卻措施或停泵;油溫過低,需採取加溫措施或低壓運轉來提高油溫。

4、電動機啟動前,需將換向閥換至中半位。點動數次,以防高壓泵吸空,排除空氣後方可使用。

5、泵出廠時調定的工作壓力不得任意提高。

6、高壓膠管出廠時,均經過額定壓力1.25倍的耐壓試驗。由於膠質的老化,用戶長期使用時,應注意定期檢查,半年檢查一次。當檢查做耐壓試驗時,發生滲漏、凸起或爆破情況下,必須更換。使用時,應避免打折和出現急彎,同時不可離膠管太近,以防爆破甩起傷人。固定場合,可用鋼管代替。

7、泵每年檢修一次。全部零件用煤油清洗,注意保護千斤頂的各配合表面,不得任意磕碰,裝配後,各運動件應運動靈活,無局部卡阻。

4. 上海寶山螺旋千斤頂(10T 16T 32T)內軸承型號

10T螺旋千斤頂軸承8307. 16T螺旋千斤頂軸承8308。32T螺旋千斤頂軸承16909

5. 千斤頂常見的類型有哪些,各有什麼特點,

常見的千斤頂有:電動千斤頂、液壓千斤頂和螺旋千斤頂三種。

電動千斤頂、液壓千斤頂和螺旋千斤頂特點分別為:

1、電動千斤頂特點

這種千斤頂內部裝有個保壓裝置,用於防止超壓;如果有超壓現象,電動千斤頂就會回不到設計的預定位置,還可達到低高度達到高行程的目的。

2、液壓千斤頂特點

這種千斤頂用液壓傳動系統中的液體作中間介質,這種液體有傳遞和轉換能量的作用,在使用過程中還有潤滑、防腐、冷卻、沖洗等作用。

3、螺旋千斤頂特點

這種千斤頂的螺紋沒有自鎖作用。只要放鬆制動器,重物就可以自行快速下降,縮短返程時間,但這種千斤頂構造較復雜。螺旋千斤頂能長期支持重物,最大起重量已達100 t,應用較廣。下部裝上水平螺桿後,還能使重物做小距離橫移。

(5)32t螺旋千斤頂如何翻新擴展閱讀:

千斤頂按結構特徵可分為:液壓(油壓)千斤頂、螺旋千斤頂和齒條千斤頂三種。

千斤頂按其他方式可分為:卧式千斤頂、油壓千斤頂、分離式千斤頂、電動千斤頂、爪式千斤頂、同步千斤頂等。其中常用的千斤頂有螺旋千斤頂、液壓千斤頂、電動千斤頂等。

千斤頂是一種安全可靠的起重設備,一般情況不會出現問題,但是在使用時也有以下注意事項:

1、一般千斤頂的工作介質為YB-N32液壓油,環境溫度低於10℃時,可改用YB-N22液壓油,環境溫度高於40℃時,可改用YB-N46液壓油。

2、工作中油箱的液面應始終保持在油標的中心線上,以防油泵吸空。加油時,應用120目濾油網濾去新油中雜質。經常使用時,每2個月清洗一次濾油器,半年清洗一次油箱,同時更換新油。

3、千斤頂油泵正常工作溫度為10~50℃。油溫過高,需採取冷卻措施或停泵;油溫過低,需採取加溫措施或低壓運轉來提高油溫。

6. 螺旋千斤頂的設計

螺旋式千斤頂螺優化設計
摘 要:採用非傳統優化設計方法,以螺旋千斤頂螺紋副體積最小為目標函數, 用MATLAB語言優化工具對其進行優化設計,並給出了計算實例。
關鍵詞:優化設計;千斤頂;傳動螺紋副

1 數學模型的建立

手動螺旋千斤頂主要包括底座、棘輪、圓錐齒輪副、托杯、傳動螺紋副等部分。千斤頂最大起重量是其最主要的性能指標之一。千斤頂在工作過程中,傳動螺紋副承受主要的工作載荷,螺紋副工作壽命決定千斤頂使用壽命,故傳動螺紋副的設計最為關鍵,其設計與最大起重量、螺紋副材料、螺紋牙型以及螺紋頭數等都有關系。

1.1 目標函數與設計變數

手動螺旋千斤頂在滿足設計性能和要求的前提下,從結構緊湊、減輕重量、節省材料和降低成本考慮。在給出千斤頂最大起重量、傳動螺紋副材料及其屈服應力、螺紋頭數等基本設計要求和圓錐齒輪副等已定的情況下,可從螺紋副設計著手考慮,使螺紋副所用材料最少,即在滿足設計性能的情況下,傳動螺桿、螺母所佔體積最少。

螺桿的體積為:v1=πd22L/2

螺母的體積為:v2=π(D′2-D22)H/4

式中:d2——螺桿中徑,mm;
D′——螺母外徑(虛擬),mm;
D2——螺母中徑,mm;
L——螺桿總長,mm;
H——螺母高度,mm.

考慮到傳動效率要求較高和螺紋受力較大等因素,千斤頂一般採用鋸齒形螺紋傳動,其大徑、中徑、小徑之間有如下關系:

d2=d-0.75P
d1=d-1.736P

且內、外螺紋有如下關系:D=d;D2=d2;

式中,D2、d2為內、外螺紋中徑;P為螺距;D、d為內、外螺紋大徑;d1為內螺紋小徑。

則目標函數(即傳動螺紋副體積之和)為:

V=V1+V2=πL(d-0.75P)2-/4+π〔D′2--(d-0.75P)2-〕H/4

從目標函數表達式中可以看出,L、D′均為常量,而螺距P取值雖為整數,但其取值隨螺紋公稱直徑而變化,這里將其作為變數。故變數有d、H、P 三個,記作:

X=〔x1,x2,x3〕T=〔d,H,P〕T

目標函數表達式為:

V(x)=πL(x1-0.75x3)3/4+π〔D′2-(x1-0.75x3)2〕x2/4

1.2 優化約束條件

1.2.1 約束條件分析

(1)耐磨性條件

鋸齒形螺紋工作高度h:h=0.75P

根據手動螺旋千斤頂傳動螺紋副滑動速度較低,及螺母和螺桿材料等條件,查取許用比壓〔p〕:

計算比壓為:p=FP/[(d-0.75P)πhH]<〔p〕

(2) 螺紋的自鎖條件

螺旋升角ψ:ψ=arctanP/πd2=arctanP/[π(d-0.75P)]

當量摩擦角ρv=arctanuv,uv為螺紋副當量摩擦系數。

自鎖條件為:ψ<ρv-(1°~1.5°),即

arctanP/[π(d-0.75P)]<ρv-(1°~1.5°)

(3)螺桿的強度條件

螺紋危險截面面積A為:A=π(d-1.736P)2/4

螺桿所受轉矩T:T=F·tan(ψ+ρv)(d-0.75P)/2

當量應力為:

式中,F為千斤頂最大起重量,單位為N.

查表,確定許用應力〔σ〕.

當量應力應小於許用應力,即:σca<〔σ〕

(4) 螺紋牙剪切強度條件

按機械性能較弱的螺母材料進行計算:

螺母的外徑D等於螺桿外徑d:D=d
螺紋牙根厚b:b=0.75P
螺紋旋合圈數z:z=H/P

查表取得許用剪切應力〔τ〕.

按剪切強度進行計算:τ=F/(πDbz)=F/(πd·0.75P·H/P),τ<〔τ〕.

(5)螺紋牙彎曲強度條件

同樣,取機械性能較弱的螺母材料進行計算。

按彎曲強度進行計算:σb=3F(D-D2)/(πDb2z)=3F(d-d2)/(πDb2z)=3F〔d-(d-0.75P)〕/(πDb2z)

σb<〔σb〕.

對靜載,許用應力應取較大值。

(6)螺桿的穩定性條件

確定螺桿的柔度λ值:λ=μL/i

式中,μ為螺桿的長度系數,L為螺桿的總長度,i為螺桿危險截面慣性半徑,i=d1/4.

螺桿的長度系數根據螺紋副固定形式取值。

λ值小於許用值〔λ〕,即:λ<〔λ〕.

(7)螺桿公稱直徑取值范圍

查《機械設計手冊》,取d值范圍為:20mm≤d≤650mm.

(8)螺母最大高度(螺紋嚙合長度)范圍:30 mm≤H≤280 mm.

(9)螺紋螺距取值范圍

查《機械設計手冊》,得P值范圍為2 mm≤P≤24 mm.

1.2.2 約束條件

約束條件表達式如下:

g1(x)=F-〔0.75π(x1-0.75x3)x2〕〔p〕≤0
g2(x)=arctanx3/[π(x1-0.75x3)]-ρv+(1°~1.5°)≤0

g4(x)=F/(0.75πx1x2)-〔τ〕≤0
g5(x)=3F/(0.75πx1x2)-〔σb〕≤0
g6(x)=4μL/(x1-1.736x3)-〔λ〕≤0
g7(x)=30-x2≤0
g8(x)=x2-280≤0
g9(x)=20-x1≤0
g10(x)=x1-650≤0
g11(x)=2-x3≤0
g12(x)=x3-24≤0

2 優化方法

本問題有三個變數12個約束條件,採用MATLAB優化工具對其進行優化設計。

3 優化設計實例

某廠生產一種手動螺旋千斤頂,最大設計起重量為40 kN,螺紋為鋸齒形,螺桿材料採用40Cr,熱處理HRC45~50,σs=785Mpa,螺母用ZCuAl10Fe3,螺紋副當量摩擦系數為μv=0.13,千斤頂最大起重高度為130 mm,圓錐齒輪厚為30 mm,軸承固定端l0/d0=7/18。試設計傳動螺紋副,使其結構緊湊、所用材料最省。

根據前面的數學建模,我們先通過查表或計算,得到約束條件的各個相關參數,然後再將其代入上述建模的約束條件,從而得到螺紋副的最優設計方案。

現將原設計與優化設計結果加以對照(表1),可以看出,優化設計後螺紋副體積比原設計減少12.51%。採用優化設計方法,不僅節省材料,降低工廠生產成本,而且節省設計時間。這有助於改革傳統的設計方法,為新產品開發改進提供了有力的依據。

7. 32噸螺旋千斤頂怎麼放下來

搬下來,或者抬下來,實在不行就找個吊機吊下來,它既然能上去,就肯定有辦法弄下來,也可以打電話問問製造這個東西的原廠。他們肯定有辦法的。

8. 跪求解答:課程設計,螺旋千斤頂設計,起重重量32t,最低高度400mm,起重高度200mm。求各個零件的尺寸。

螺旋千斤頂設計,起重重量32t,最低高度400mm,起重高度200mm。求各個零件的尺寸
知道的事情比較多

閱讀全文

與32t螺旋千斤頂如何翻新相關的資料

熱點內容
北京家居電子商務有限公司 瀏覽:253
蘋果指紋保修嗎 瀏覽:270
木質傢具摔裂怎麼固定 瀏覽:296
防水塗料如何用滾筒刷 瀏覽:563
華苑冠華維修電話 瀏覽:698
頂樓雨棚多久需要維修 瀏覽:864
海爾空調武漢維修點 瀏覽:603
北碚長安4s店維修電話號碼 瀏覽:924
小米售後維修大概需要多久 瀏覽:949
電腦保修鍵盤進水保修嗎 瀏覽:398
維修車子需要帶什麼 瀏覽:829
維修電腦與家電怎麼辦理執照 瀏覽:518
瑞士珠寶保修單 瀏覽:284
中式古典傢具質量怎麼樣 瀏覽:296
合肥傢具除甲醛如何處理 瀏覽:457
樓頂開裂用什麼防水材料 瀏覽:441
蘋果廣西售後維修點嗎 瀏覽:739
廣州市蘋果維修電話 瀏覽:46
家電的市場部活動怎麼寫 瀏覽:535
開平二手家電市場在哪裡 瀏覽:202