① 脈沖信號放大電路
你可以去下載一個說明書,
http://www.21icsearch.com/s_lm324.html
是ON Semiconctor公司的,其中P7第13圖你就可以用。它是類似於斯密特電路,專可以算是脈沖放大整型屬用。
你對LM324使用24V電源就可以了。
② 這個電路是如何產生脈沖信號的
唉,你的電磁學基礎、電子技術基礎很薄弱啊,連正反饋、自激振盪、三極體飽和狀態與截止狀態的轉換、磁芯變壓器工作原理(如多個繞組的同名端判斷)、……這一系列知識,都一知半解甚至完全不懂啊,你的分析完全錯誤。
如左圖:忽略變壓器繞組的內電阻。電路接通後,三極體通過變壓器初級線圈的MN部分、基極電阻Rb獲得基極電流Ib,Ib=(U-0.7V)/Rb,經放大後集電極流過Ic=βIb的電流,這個集電極電流必然流過變壓器初級線圈的NP部分。其中,U為電源電壓,0.7V為三極體be結正向壓降。
高中物理課學過的變壓器知識告訴我們:這個變壓器的線圈MNP部分就是一個變壓器,其原線圈為NP、副線圈為MN。再由高中物理電磁感應部分的「楞次定律」可知,M端和P端為同名端,即這個變壓器工作時,M和N兩端相對於P端的電位同時為正或同時為負。也就是說M和N兩端的電位同時比P端高且M端比N端更高,或同時比P端低且M端比N端更低。
當電路接通後,集電極電流(流過線圈NP部分的電流)從無到有、逐漸增大時,N端電位高於P端電位,變壓器鐵芯中的磁通量不斷增加,電磁感應的結果必然使得M端電位同樣高於P端電位、同時也高於N端電位(請自行用楞次定律驗證),即Umn>0。Umn疊加了電源電壓,使得基極電流增大為 (U+Umn-0.7V)/Rb,基極電流的增大,使得三極體迅速飽和導通,飽和後三極體ce兩極間電壓減小為0.3V左右,近乎短路。圖中綠色箭頭表明Umn疊加電源電壓後基極電流Ib流經的路徑。
三極體飽和後,Upn為定值U-0.3V,流過線圈NP的電流(即集電極電流Ic)線性增長(即△Ic/△t為常數),其隨時間t變化的函數為Ic=(U-0.3V)t/L,L為線圈NP部分的電感(自感系數)。當Ic增長到βIb之前,Umn>0一直成立,且Umn為定值(由MN和NP兩組線圈匝數比決定)。當Ic一旦達到βIb(又或者變壓器磁芯磁通飽和)時,三極體開始退出飽和狀態,Ic無法繼續線性增長,其變化量△Ic/△t無法保持常數而開始減小,Upn開始減小,Upn的減小,導致Umn減小。Umn的減小使得Ib進一步減小,Ib的進一步減小必然導致Ic停止增大轉而開始減小,Ic減小將導致變壓器各組線圈感應電動勢反向,即Umn<0。通過合理的設計匝數比,令Umn高於電源電壓,Umn<0的結果必然使得三極體基極反偏、Ib=0,三極體迅速截止、Ic=0。
三極體截止期間,儲存在變壓器磁芯中的磁通量不可能立即衰減為零(如同運動的物體有慣性不可能瞬間停止運動),各組線圈必然產生自感現象,線圈PN產生的自感電動勢疊加電源電壓後加在三極體ce兩極之間,只要三極體耐壓值足夠就不會擊穿損壞,線圈MN產生的自感電動勢與電源電壓方向相反,二者之差通過基極電阻Rb使得三極體基極反偏確保三極體持續截止。變壓器次級線圈匝數很多,產生很高的自感電動勢向外輸出------想電誰就電誰。
當磁芯中的磁通量減小為零(磁場能量釋放完畢)後,各組線圈的感應電壓消失,電魯狀態重新恢復到最初剛接通電路的狀態,基極電流重新建立,然後重新開始上述自激振盪過程。MN線圈和NP線圈互感提供Umn,Umn為三極體提供自激振盪需要的正反饋信號。
通過合理的選擇元件、設置變壓器匝數,振盪的頻率很高(通常高達幾十~幾百kHz),輸出的是方波電壓,變壓器工作在反激狀態。
右圖為三極體截止期間的狀態。圖中的+、-符號表示變壓器各個繞組端電位高低對比。
元件選擇:電源電壓3~6V。三極體選擇耐壓幾十伏以上、最大集電極電流較大的型號,如2SC8050、9014等。如果輸出功率較大,還可以選用最大集電極電流超過2A的中功率管。
磁芯變壓器可從廢舊節能燈電路板拆下EI變壓器自行改造,磁芯規格一般為EI9、EI16、EI20等,初級MP一共為7匝、中間抽頭作為N端,MN為4匝、NP為3匝,用直徑0.5~1.0的漆包線繞制。次級線圈用直徑0.1~0.2的漆包線繞制,具體匝數根據需要自己定,例如200匝。繞制過程注意處理好絕緣,初次級之間必須用絕緣膠布隔開,次級線圈輸出端遠離初級線圈引出。
基極電阻Rb可根據試驗效果調整,根據三極體β值的不同,取值一般在幾~幾十kΩ之間。
③ 常用的脈沖信號產生電路由什麼實現,它是一種無穩態電路,可以產生什麼或方波
常用的來脈沖信號電路可由多種電自路方式構建產生,大概有以下幾種:
1、非門或與非門構成脈沖振盪器;
2、單個施密特非門構成脈沖振盪器;
3、運放或比較器構成脈沖振盪器;
4、555時基電路構成脈沖振盪器;
5、專用信號產生IC構成脈沖振盪器;
上述振盪器主要產生方波、矩形波,也可產生三角波,專用信號產生IC可以產生更多波形。
④ 脈沖信號發生電路
PWM脈沖寬度調制。可以用FPGA加運算放大器的方式得到。你自己去搜PWM,太多了
⑤ 什麼是脈沖電路,組成是什麼
高電平為1,低電平為0
0--》1--》0
這樣就算是一個脈沖
作用有些電氣件設置是脈沖信號觸發,計數器等脈沖信號工作,定時器也可能輸出脈沖信號
⑥ 脈沖信號 放大電路
左邊的是放大電路,你的左邊的是放大電路不對。看你的輸入波形是一正脈沖方波,你應該把方波輸入信號加在10腳,輸入電阻R1應選小些。把輸出反饋電阻R7,C7改到9腳。這樣電路才能放大。
⑦ 製作脈沖信號電,,,求電路圖
用555做一個脈沖發生電路,占空比,脈寬你可自行設定。當VDD=5V,輸出差不多10mA,15V時可輸出100mA。
應滿足您的需求。
⑧ 什麼是脈沖電路具體什麼用處
脈沖電路是專門用來
產生電脈沖和對電脈沖進行放大、
變換和整形的電路。
家用電器中的定時器、
報
警器、
電子開關、
電子鍾表、
電子玩具以及電子醫療器具等,
都要用到脈沖電路。
脈沖電路的基本知識
在數字電路中分別以高電平和低電平表示1狀態和0狀態。此時電信號的波形是非正弦波。通常,就把一切既非直流又非正弦交流的電壓或電流統稱為脈沖。
圖Z1601表示出幾種常見的脈沖波形,它們既可有規律地重復出現,也可以偶爾出現一次。
脈沖波形多種多樣,表徵它們特性的參數也不盡相同,這里,僅以圖Z1602所示的矩形脈沖為例,介紹脈沖波形的主要參數。
(1)脈沖幅度Vm--脈沖電壓或電流的最大值。脈沖電壓幅度的單位為V、mV,脈沖電流幅度的單位為A、mA。
(2)脈沖前沿上升時間tr--脈沖前沿從0.1Vm上升到0.9Vm所需要的時間。單位為ms、μs、ns。
(3)脈沖後沿下降時間tf--脈沖後沿從0.9Vm下降到0.1Vm所需要的時間。單位為:ms、μs、ns。
(4)脈沖寬度tk--從脈沖前沿上升到0.5Vm處開始,到脈沖下降到0.5Vm處為止的一段時間。單位為:s、ms、μs或ns。
(5)脈沖周期T--周期性重復的脈沖序列中,兩相鄰脈沖重復出現的間隔時間。單位為:s、ms、μs。
(6)脈沖重復頻率--脈沖周期的倒數,即f =1/T,表示單位時間內脈沖重復出現的次數,單位為Hz、kHz、MHz。
(7)占空比tk/T--脈沖寬度與脈沖周期的比值,亦稱占空系數。
⑨ 求脈沖信號產生電路。
是你示波器不會用,時間軸調節不對,沒能在觸發點上顯示。
要是按書上做的電路,是不會有錯的,頂多隻是頻率參數不同罷了。
⑩ !!!脈沖信號延時電路!!!
你可以簡單地搞一個20us的單穩態觸發電路,當輸入脈沖來時即觸發產生你所要求的脈沖。