『壹』 電路入門之——運算放大器
運算放大器是一種可以進行數學運算的放大電路。運算放大器不僅可以通過增大或減小模擬輸入信號來實現放大,還可以進行加減法以及微積分等運算。所以,運算放大器是一種用途廣泛,又便於使用的集成電路。
如圖1所示,運算放大器的電路符號有正相輸入端Vin(+)和反相輸入端Vin(-)兩個輸入引腳,以及一個輸出引腳Vout。實際上運算放大器還有電源引腳(+電源、-電源)和偏移輸入引腳等,在電路符號上沒有表示出來。
運算放大器的主要功能是以高增益放大、輸出2個模擬信號的差值。我們將放大2個輸入電壓差的運放稱為差動放大器。當Vin(+)電壓較高時,正向放大輸出。當Vin(-)電壓較高時,負向放大輸出。此外,運算放大器還具有輸入阻抗極大和輸出阻抗極小的特徵。即使輸入信號的差很小,由於運算放大器有極高的放大倍數,所以,也會導致輸出最大或最小電壓值。因此,常常要加負反饋後使用。下面讓我們來看一個使用了負反饋的放大器電路。
如圖2所示,反相放大器電路具有放大輸入信號並反相輸出的功能。「反相」的意思是正、負號顛倒。這個放大器應用了負反饋技術。所謂負反饋,即將輸出信號的一部分返回到輸入,在圖2所示電路中,象把輸出Vout經由R2連接(返回)到反相輸入端(-)的連接方法就是負反饋。
我們來看一下這個反相放大器電路的工作過程。運算放大器具有以下特點,當輸出端不加電源電壓時,正相輸入端(+)和反相輸入端(-)被認為施加了相同的電壓,也就是說可以認為是虛短路。所以,當正相輸入端(+)為0V時,A點的電壓也為0V。根據歐姆定律,可以得出經過R1的I1=Vin/R1。另外,運算放大器的輸入阻抗極高,反相輸入端(-)中基本上沒有電流。因此,當I1經由A點流向R2時,I1和I2電流基本相等。由以上條件,對R2使用歐姆定律,則得出Vout=-I1×R2。I1為負是因為I2從電壓為0V的點A流出。換一個角度來看,當反相輸入端(-)的輸入電壓上升時,輸出會被反相,向負方向大幅度放大。由於這個負方向的輸出電壓經由R2與反相輸入端相連,因此,會使反相輸入端(-)的電壓上升受阻。反相輸入端和正相輸入端電壓都變為0V,輸出電壓穩定。
那麼我們通過這個放大器電路中輸入與輸出的關系來計算一下增益。增益是Vout和Vin的比,即Vout/Vin=(-I1×R2)/(I1×R1)=-R2/R1。所得增益為-表示波形反相。在這個算公式中需要特別注意的地方是,增益僅由R1和R2電阻比決定。也就是說。我們可以通過改變電阻容易地改變增益。在具有高增益的運算放大器上應用負反饋,通過調整電阻值,就可以得到期望的增益電路。
與反相放大器電路相對,圖3所御型示電路叫做正相放大器電路。與反相放大器電路最大的不同是,在正相放大器電路中,輸入波形和輸出波形的相位是相同的,以及輸入信號是加在正相輸入端(+)。與反相放大器電路相同的是,兩個電路都利用了負反饋。
我們來看一下這個電路的工作過程。戚帶首先,通過虛短路,正相輸入端(+)和反相輸入端(-)的電壓都是Vin,即點A電壓為Vin。根據歐姆定律,Vin=R1×I1。另外,運算放大器的兩個輸入端上基本沒有電流,所以I1=I2。而Vout為R1與R2電壓的和,即Vout=R2×I2+R1×I1。整理以上公式可得到增益G,即G=Vout/Vin=(1+R2/R1)。如果撤銷這個電路中的R1,將R2電阻變為0Ω或者短路,則電路變為增益為1的電壓跟隨器。這種電路常用於阻抗變換和緩沖器中。
Comparator也可稱為比較器,比較兩個電壓的大小,然後輸出1(+側的電源電壓,圖示為VDD)或0(-側的電源電壓)。比較器常常用於檢測輸入是否達到規定值。也可以用運算放大器來代替比較器,但一般情鎮仔猜況下使用專用的比較器IC。比較器和運算放大器使用相同電路符號。
比較器電路如圖4所示。我們來看一下這個電路的工作過程。首先應該注意,這個電路中沒有正反饋也沒有負反饋。放大Vin和VREF的差值,從Vout輸出。例如,Vin大於VREF時,放大輸出的Vout上升至+側的電源電壓,達到飽和。Vin小於VREF時,輸出Vout下降至-側電源電壓達到飽和。通過這個動作,Vin和VREF的比較結果在Vout上輸出。實際應用中,一般使圖4電路上產生滯後(用於防止錯誤動作的電壓領域),如圖5,Vin會產生一些噪波,但仍可穩定動作。
負反饋動作中,從輸出返到輸入的信號越大,則輸出越小。於此相反,正反饋中,從輸出返到輸入的信號越大,則輸入越大。當正反饋動作中增益大於1時,電路振盪。將這種振盪合理利用到電路中,就形成振盪電路。圖6的不穩定多諧振盪器就是一個振盪電路。
+側最大值VL和-側最大值VL都是不穩定的,兩個數值不斷變化,因此稱之為不穩定。我們來看看這個電路中的動作。首先,輸出Vout經由R2反饋至正相輸入端(+),這是一個正反饋電路。然後在輸入Vout上應用R3和C,這是一個積分電路。大家可能會覺得積分電路很難,實際上,我們可以將它簡單理解為,輸出在Vout上的電壓的一部分,緩緩儲存到電容器的一個過程電路。在初始狀態中,通過正反饋電路Vout迅速增大並達到最大值(VL)。
然後,通過R3和C構成的積分電路,緩緩增加反相輸入端(-)。經過一定時間,正相輸入端(+)的電壓超過反相輸入端(-)電壓,相當於在差動輸入上輸入負電壓,則Vout在負側上迅速增大達到-VL。Vout變為負,通過R3和C構成的積分電路,反相輸入端(-)電壓緩緩增大。經過一定時間後,反相輸入端電壓超過正相輸入端(+)的電壓,相當於在差動輸入上輸入了正電壓,則Vout向正方向迅速變化。這個過程不斷重復,在Vout交替出現VL和-VL,從而實現振盪電路動作。
『貳』 幾種基本運算電路分別有什麼特點加以區分,功放和運放有什麼區別
1、基本運算電路的特點及區別:
(1)、反相放大器(反相比例運算) Av=Rf/R1,Ri=R1
電路性能好,較多使用。
(2)、同相放大器(同相比例運算) Av=1+(Rf/R1),Ri= ∞
由於有共模信號輸入,(單端輸入的信號中能分離出共模信號),所以要求使用的運放的共模抑制比高才行,否則最好不用此電路。
(3)、差動放大器(減法器)當選擇R1=R2,R3=RF時,u0=(Rf/R1)/(u2-u1)
(4)、反相加法器u0=(Rf/R1)/(u2-u1)
電路除了輸入電阻較小,其他性能優良,是較多使用的電路。
(5)、同相加法器u0=((Rf*u2/R1)+(Rf*u1/R1)
電路計算比較麻煩,較少採用,若一定相讓輸入、輸出同相,一般使用兩級反相加法器。
(6)、積分電路,無法寫表達式
(7)、微分電路 U0=-RC*i/dt
(8)、比較器U0+=VCC VO-=UEE
2、功放和運放的區別:
(1)、功放是有電壓和電流放大作用的,做大信號放大,即功率放大。
(2)、運放一般用於小信號電壓放大,電流驅動能力很弱。
(2)加法電路運算放大器擴展閱讀:
運算電路
集成運放是一個已經裝配好的高增益直接耦合放大器,加接反饋網路以後,就組成了運算電路。
特點
1. 運算電路的輸入輸出關系,僅僅決定於反饋網路;因此只要選取適當的反饋網路,就可以實現所需要的運算功能,如比例、加減、乘除、微積分、對數等。
2. 這樣的運算電路,被廣泛地應用於對模擬信號進行 各種數學處理,稱之為模擬運算電路。
3. 模擬運算電路通常表現輸入/輸出電壓之間的函數關系
模擬運算電路
運算電路可分為模擬運算電路和數字運算電路兩大類。模擬運算電路具有電路簡單,成本低,實時性強等特點。
引起模擬運算電路運算誤差的主要因素 :
運放參數的非理想性引起運算誤差,其中Kd,Rd,CMRR,Uo,Id和Io的影響是主要的。
為減小運算誤差,Kd,Rd,和CMRR越大越好,Uo,Io越小越好。
運放雜訊和外圍電阻雜訊引起運算誤差,對由電阻阻值誤差引起的運算誤差,容易根據運算電路的輸出表達式,用求偏導的方法求得。
為減小電阻阻值誤差引起的運算誤差,可選用溫度系數小的精密電阻,必要時還可在電路中設置調節環節來補償。
運放參數隨工作頻率變化引起的運算誤差,反饋網路通常是無源網路,無源元件可選用高穩定性的元件,因而電路增益可獲得很高的穩定性,也就抑制了運放參數變化引起的運算誤差。
參考資料
網路-運放
網路-功放
網路-運算電路