Ⅰ 關於光耦電路的原理
光耦電路即光電耦合器一般由三部分組成,光的發射、光的接收及信號放大。輸入的電信號驅動發光二極體(LED),使之發出一定波長的光,被光探測器接收而產生光電流,再經過進一步放大後輸出。這就完成了電—光—電的轉換,從而起到輸入、輸出、隔離的作用。
在光耦電路設計中,有兩個參數需要格外注意,一個是反向電壓Vr,是指原邊發光二極體所能承受的最大反向電壓,超過此反向電壓,可能會損壞LED。而一般光耦中,這個參數只有5V左右,在存在反壓或振盪的條件下使用時,要特別注意不要超過反向電壓。
另外一個參數是光耦的電流傳輸比是指在直流工作條件下,光耦的輸出電流與輸入電流之間的比值。光耦的CTR類似於三極體的電流放大倍數,是光耦的一個極為重要的參數,它取決於光耦的輸入電流和輸出電流值及電耦的電源電壓值,
這幾個參數共同決定了光耦工作在放大狀態還是開關狀態,其計算方法與三極體工作狀態計算方法類似。若輸入電流、輸出電流、電流傳輸比設計搭配不合理,可能導致電路不能工作在預想的工作狀態。
光耦電路中C-E飽和電壓Vce(sat),即光敏三極體的集電極-發射極飽和壓降。正向工作電壓Vf(ForwardVoltage),Vf是指在給定的工作電流下,LED本身的壓降。常見的小功率LED通常以If=10mA來測試正向工作電壓,當然不同的LED,測試條件和測試結果也會不一樣。
(1)光耦自鎖電路擴展閱讀;
線形光耦介紹,光隔離是一種很常用的信號隔離形式。常用光耦器件及其外圍電路組成。由於光耦電路簡單,在數字隔離電路或數據傳輸電路中常常用到,如UART協議的20mA電流環。對於模擬信號,光耦因為輸入輸出的線形較差,並且隨溫度變化較大,限制了其在模擬信號隔離的應用。
對於高頻交流模擬信號,變壓器隔離是最常見的選擇,但對於支流信號卻不適用。一些廠家提供隔離放大器作為模擬信號隔離的解決方案,如ADI的AD202,能夠提供從直流到幾K的頻率內提供0.025%的線性度,但這種隔離器件內部先進行電壓-頻率轉換。
對產生的交流信號進行變壓器隔離,然後進行頻率-電壓轉換得到隔離效果。集成的隔離放大器內部電路復雜,體積大,成本高,不適合大規模應用。
Ⅱ 光耦在電路使用中的工作原理
光耦,即光電耦合器,
結構:一般4腳的光耦,輸入端跨接的是一隻led,輸出端跨接的是一隻光敏三級管,led和光敏三級管是被密封在一個封裝中的。
原理:當在輸入端加一正向導通電壓,led發光,光敏三級管受光照,發射結導通,三級管相當於開關。此「開關」的通斷由輸入端決定。
優點:隔斷輸入端(控制電路)與輸出端(被控制電路),避免被控制電路在工作時電壓的抖動對控制端造成影響。
Ⅲ 光耦的作用及工作原理是什麼
工作原理
耦合器以光為媒介傳輸電信號。它對輸入、輸出電信號有良好的隔離作用,所以,它在各種電路中得到廣泛的應用。它已成為種類最多、用途最廣的光電器件之一。光耦合器一般由三部分組成:光的發射、光的接收及信號放大。
輸入的電信號驅動發神迅桐光二極體(LED),使之發出一定波長的光,被光探測器接收而產生光電流,再經過進一步放大後輸出。這就完成了電—光—電的轉換,從而起到輸入、輸出、隔離的作用。由於光耦合器輸昌純入輸出間互相隔離,電信號傳輸具有單向性等特點,因而具有良好的電絕緣能力和抗干擾能力。
所以,它在長線傳輸信息中作為終端隔離元件可以大大提高信噪比。在計算機數字通信及實時控制中作為信號隔離的介面器件,可以大大提高計算機游坦工作的可靠性。
又由於光耦合器的輸入端屬於電流型工作的低阻元件,因而具有很強的共模抑制能力。
作用
光電耦合元件廣泛用於電氣絕緣、電平轉換、級間耦合、驅動電路、開關電路、斬波器、多諧振盪器、信號隔離、級間隔離、數位儀表、遠距離信號傳輸(工業通訊)、脈沖放大、固態繼電器(SSR)、儀器儀表、通信設備及微機電界面中。
在單片開關電源中,利用線性光耦合器可構成光耦回饋電路,通過調節控制端電流來改變占空比,達到精密穩壓目的。
歷史
用光學方式耦合固態光發射器及半導體感測器的想法是在1963由Akmenkalns等人提出(US patent 3,417,249)。光敏電阻為基礎的光電耦合元件在1968年問世,其速度慢,但是是最線性隔離元件,在音樂及音響產業中仍有其利基市場。
LED技術在1968–1970年的商品化,使得光電工程大幅成長,在1970年代末各種主要的光電耦合元件均已開發出來。光電耦合元件的主力是雙極性的硅光晶體感測器,可以達到足夠的的傳輸速度,足以用在像腦電圖之類的應用上,目前最快的光電耦合元件是利用光導模式的PIN型二極體。
以上內容參考網路-光耦
Ⅳ 如何實現電瓶充滿後自動斷電的電原理圖和其簡單的電路製作方法
電動車滿電斷電電路:
下面確定元器件參數用於製作:
(按照電路圖選購電子元器件,即可完成製作)
繼電器:松樂48V繼電器就可以。電流10A。
光耦: PC817, 由於PC817 CE最大輸入電壓為35V,充電器為48V,所以用兩個電阻(R3R4)分壓為24V使用。
Q1選擇MJE13003,VCEO400V足夠。R1的作用是為了保證光耦截止時Q1可靠截止。 R2的作用是給光耦輸入限流。防止光耦損壞。IN4147是防止繼電器線圈斷電時電流損壞Q1。
將電動車充電器交流輸入端線剪開一一端串聯到48V繼電器常開觸點。光耦PC817AK端與充電器充電指示燈紅色燈的AK端相接。電路的VCC48V接入充電器48V輸出正極,負極接入充電器48V輸出負極。
將充電器插入電動車充電口中,插入交流電源,按下按鈕S1充電器正常工作紅燈亮起。由於光耦輸入端與紅燈並聯,光耦導通,Q1導通繼電器吸合繼電器處於自鎖狀態,松開按鈕,充電開始。
滿電後,充電器的紅燈變為綠燈,光耦關閉Q1截止,繼電器無電,斷開交流電源,只有重新按下S1並且紅燈亮起時才可以繼續充電。
電動車電池如果過度充電會導致大量的氣體沖刷電池的極板,導致活性物質脫落,最終縮減電池的使用壽命。另外,電動車電池過度充電還會導致失水速度加快,影響電解液的分解,導致電瓶溫度升高,導致電池使用壽命縮短。
電池使用保養注意:
正確使用充電器
1、確定交流電源與充電器輸入電壓是否相符。
2、確定充電器輸出電壓與電瓶額定電壓是否相符。
3、先插充電器與電池盒相連的插頭,後插交流電源插頭。
4、充電器用於室內,應注意防潮,防震動。充電時嚴禁覆蓋,應放在通風散熱的地方。
Ⅳ 光耦驅動電路原理
在一些實驗室或高要求場合,為了實驗人員的安全,一般將實驗的輸入電源採用1:1的工頻變壓器與市電進行隔離,這樣一來,實驗室實驗人員無論碰到線路的哪一根線都不會有觸電的危險,因為隔離電源與大地是沒有連接的。在工業控制設備中,有時候要求兩個系統之間的電源地線隔離,如隔離地線雜訊、隔離高共模電壓等,採用帶變壓器的直流變換器,將兩個電源之間隔開,使他們相互獨立。
在一般的隔離電源中,光耦隔離反饋是一種簡單、低成本的方式。但對於光耦反饋的各種連接方式及其區別,目前尚未見到比較深入的研究。而且在很多場合下,由於對光耦的工作原理理解不夠深入,光耦接法混亂,往往導致電路不能正常工作。本研究將詳細分析光耦工作原理,並針對光耦反饋的幾種典型接法加以對比研究。
1 常見的幾種連接方式及其工作原理
光電耦合器具有體積小、使用壽命長、工作溫度范圍寬、抗干擾性能強。無觸點且輸入與輸出在電氣上完全隔離等特點,因而在各種電子設備上得到廣泛的應用。光電耦合器可用於隔離電路、負載介面及各種家用電器等電路中。
常用於反饋的光耦型號有TLP521、PC817等。這里以TLP521為例,介紹這類光耦的特性。
TLP521的原邊相當於一個發光二極體,原邊電流If越大,光強越強,副邊三極體的電流Ic越大。副邊三極體電流Ic與原邊二極體電流If的比值稱為光耦的電流放大系數,該系數隨溫度變化而變化,且受溫度影響較大。
通常選擇TL431結合TLP521進行反饋。這時,TL431的工作原理相當於一個內部基準為2.5 V的電壓誤差放大器,所以在其1腳與3腳之間,要接補償網路。
Ⅵ 光耦自鎖是什麼原理
光電耦合器相核輪遲當於一個繼電器,內發光二極體相當於線圈,光接發管相當於改李觸點,這樣就可桐大以構成一個自鎖控制電路了。
Ⅶ 關於光耦電路的原理
光耦電路即光電耦合器一般由三部分組成,光的發射、光的接收及信號放大。輸入的電信號驅動發光二極體(LED),使之發出一定波長的光,被光探測器接收而產生光電流,再經過進一步放大後輸出。這就完成了電—光—電的轉換,從而起到輸入、輸出、隔離的作用。
在光耦電路設計中,有兩個參數需要格外注意,一個是反向電壓Vr,是指原邊發光二極體所能承受的最大反向電壓,超過此反向電壓,可能會損壞LED。而一般光耦中,這個參數只有5V左右,在存在反壓或振盪的條件下使用時,要特別注意不要超過反向電壓。
另外一個參數是光耦的電流傳輸比是指在直流工作條件下,光耦的輸出電流與輸入電流之間的比值。光耦的CTR類似於三極體的電流放大倍數,是光耦的一個極為重要的參數,它取決於光耦的輸入電流和輸出電流值及電耦的電源電壓值,
這幾個參數共同決定了光耦工作在放大狀態還是開關狀態,其計算方法與三極體工作狀態計算方法類似。若輸入電流、輸出電流、電流傳輸比設計搭配不合理,可能導致電路不能工作在預想的工作狀態。
光耦電路中C-E飽和電壓Vce(sat),即光敏三極體的集電極-發射極飽和壓降。正向工作電壓Vf(ForwardVoltage),Vf是指在給定的工作電流下,LED本身的壓降。常見的小功率LED通常以If=10mA來測試正向工作電壓,當然不同的LED,測試條件和測試結果也會不一樣。
(7)光耦自鎖電路擴展閱讀;
線形光耦介紹,光隔離是一種很常用的信號隔離形式。常用光耦器件及其外圍電路組成。由於光耦電路簡單,在數字隔離電路或數據傳輸電路中常常用到,如UART協議的20mA電流環。對於模擬信號,光耦因為輸入輸出的線形較差,並且隨溫度變化較大,限制了其在模擬信號隔離的應用。
對於高頻交流模擬信號,變壓器隔離是最常見的選擇,但對於支流信號卻不適用。一些廠家提供隔離放大器作為模擬信號隔離的解決方案,如ADI的AD202,能夠提供從直流到幾K的頻率內提供0.025%的線性度,但這種隔離器件內部先進行電壓-頻率轉換。
對產生的交流信號進行變壓器隔離,然後進行頻率-電壓轉換得到隔離效果。集成的隔離放大器內部電路復雜,體積大,成本高,不適合大規模應用。
Ⅷ 求助:光耦開關電路
既然沒有基礎!那就做個簡單的!用一個霍爾管做感應哪襲器!再加一個三極體猜枯驅動一路繼電器!
如此兩路!一路電機接繼電器常開端!一路接常閉端就能實現了你要的功能了!如果有些基礎把繼電器改作用光耦驅動可控硅!
!!記住霍爾是開路輸出的!要接個上拉電阻的!
還不懂Q我李兆兄!985277363
Ⅸ 用光耦做一個電源的開關,控制3V2A的電源通斷,怎樣設計呢
認真地看了一下常用的光耦pc817的資料,發現它資料上面能通過的電流是50MA,還有4N35等類似的元件,都是差不多的。其實我到現在還沒有發現能通過2A電流的光耦,我在電子廠工作了10年了,所以我認為直接用光耦根本就是不可能的。
簡單的方法應該是輸出的脈沖信號驅動光耦光電二極體,光耦的輸出端接如圖電路,如果長時間工作要注意散熱,靈敏度要求高或電流不足需要達林頓管,脈沖的頻率不可以太高的。這個電路我做過實驗,絕不是想當然
Ⅹ 誰給我說下這個電路如自鎖的!
當開關閉合後(開關處應該串聯個限流電阻才好),有電流通過路徑a,b,c,發光管得到電流而發光,導致三極體導通,輸出端3腳有電流輸出(有負載而未畫出來)而電壓升高,同時還向路徑a,b,c提供電流,以至於開關斷開後能夠繼續使光耦管導通,從而實現自鎖功能;
有個前提條件是,3腳的輸出電壓必須能夠保證使得abc支路導通,才能有效實現自鎖;