導航:首頁 > 電器電路 > 電路wdm

電路wdm

發布時間:2022-08-15 20:49:47

Ⅰ 分別說出電路交換、報文交換和分組交換三種數據交換技術的優缺點。

2008-11-13 20:30 (1)電路交換:由於電路交換在通信之前要在通信雙方之間建立一條被雙方獨占的物理通路(由通信雙方之間的交換設備和鏈路逐段連接而成),因而有以下優缺點。
優點:
①由於通信線路為通信雙方用戶專用,數據直達,所以傳輸數據的時延非常小。
②通信雙方之間的物理通路一旦建立,雙方可以隨時通信,實時性強。
③雙方通信時按發送順序傳送數據,不存在失序問題。
④電路交換既適用於傳輸模擬信號,也適用於傳輸數字信號。
⑤電路交換的交換的交換設備(交換機等)及控制均較簡單。
缺點:
①電路交換的平均連接建立時間對計算機通信來說嫌長。
②電路交換連接建立後,物理通路被通信雙方獨占,即使通信線路空閑,也不能供其他用戶使用,因而信道利用低。
③電路交換時,數據直達,不同類型、不同規格、不同速率的終端很難相互進行通信,也難以在通信過程中進行差錯控制。
(2)報文交換:報文交換是以報文為數據交換的單位,報文攜帶有目標地址、源地址等信息,在交換結點採用存儲轉發的傳輸方式,因而有以下優缺點:
優點:
①報文交換不需要為通信雙方預先建立一條專用的通信線路,不存在連接建立時延,用戶可隨時發送報文。
②由於採用存儲轉發的傳輸方式,使之具有下列優點:a.在報文交換中便於設置代碼檢驗和數據重發設施,加之交換結點還具有路徑選擇,就可以做到某條傳輸路徑發生故障時,重新選擇另一條路徑傳輸數據,提高了傳輸的可靠性;b.在存儲轉發中容易實現代碼轉換和速率匹配,甚至收發雙方可以不同時處於可用狀態。這樣就便於類型、規格和速度不同的計算機之間進行通信;c.提供多目標服務,即一個報文可以同時發送到多個目的地址,這在電路交換中是很難實現的;d.允許建立數據傳輸的優先順序,使優先順序高的報文優先轉換。
③通信雙方不是固定佔有一條通信線路,而是在不同的時間一段一段地部分佔有這條物理通路,因而大大提高了通信線路的利用率。
缺點:
①由於數據進入交換結點後要經歷存儲、轉發這一過程,從而引起轉發時延(包括接收報文、檢驗正確性、排隊、發送時間等),而且網路的通信量愈大,造成的時延就愈大,因此報文交換的實時性差,不適合傳送實時或互動式業務的數據。
②報文交換只適用於數字信號。
③由於報文長度沒有限制,而每個中間結點都要完整地接收傳來的整個報文,當輸出線路不空閑時,還可能要存儲幾個完整報文等待轉發,要求網路中每個結點有較大的緩沖區。為了降低成本,減少結點的緩沖存儲器的容量,有時要把等待轉發的報文存在磁碟上,進一步增加了傳送時延。
(3)分組交換:分組交換仍採用存儲轉發傳輸方式,但將一個長報文先分割為若干個較短的分組,然後把這些分組(攜帶源、目的地址和編號信息)逐個地發送出去,因此分組交換除了具有報文的優點外,與報文交換相比有以下優缺點:
優點:
①加速了數據在網路中的傳輸。因為分組是逐個傳輸,可以使後一個分組的存儲操作與前一個分組的轉發操作並行,這種流水線式傳輸方式減少了報文的傳輸時間。此外,傳輸一個分組所需的緩沖區比傳輸一份報文所需的緩沖區小得多,這樣因緩沖區不足而等待發送的機率及等待的時間也必然少得多。
②簡化了存儲管理。因為分組的長度固定,相應的緩沖區的大小也固定,在交換結點中存儲器的管理通常被簡化為對緩沖區的管理,相對比較容易。
③減少了出錯機率和重發數據量。因為分組較短,其出錯機率必然減少,每次重發的數據量也就大大減少,這樣不僅提高了可靠性,也減少了傳輸時延。
④由於分組短小,更適用於採用優先順序策略,便於及時傳送一些緊急數據,因此對於計算機之間的突發式的數據通信,分組交換顯然更為合適些。
缺點:
①盡管分組交換比報文交換的傳輸時延少,但仍存在存儲轉發時延,而且其結點交換機必須具有更強的處理能力。
②分組交換與報文交換一樣,每個分組都要加上源、目的地址和分組編號等信息,使傳送的信息量大約增大5%~10%,一定程度上降低了通信效率,增加了處理的時間,使控制復雜,時延增加。
③當分組交換採用數據報服務時,可能出現失序、丟失或重復分組,分組到達目的結點時,要對分組按編號進行排序等工作,增加了麻煩。若採用虛電路服務,雖無失序問題,但有呼叫建立、數據傳輸和虛電路釋放三個過程。
總之,若要傳送的數據量很大,且其傳送時間遠大於呼叫時間,則採用電路交換較為合適;當端到端的通路有很多段的鏈路組成時,採用分組交換傳送數據較為合適。從提高整個網路的信道利用率上看,報文交換和分組交換優於電路交換,其中分組交換比報文交換的時延小,尤其適合於計算機之間的突發式的數據通信。電路交換和分組交換

電路交換技術很少用於數據業務網路,主要是因為其資源利用效率和可靠性低。分組交換技術通過統計復用方式,提高了資源利用效率。而且當出現線路故障時,分組交換技術可通過重新選路重傳,提高了可靠性。但是現實情況是:許多線路資源由於缺少交換能力而未被使用,使用的線路資源利用率往往不到百分之十,路由器平均一年的宕機時間不到5秒,發生故障的概率很小。因此上述原因對於當今選擇交換技術沒有意義。

而另一個方面,分組交換是非面向連接的,對於一些實時性業務有著先天的缺陷,雖然有資源預留等一系列緩解之道,但並不足以解決根本問題。因此這些業務的QoS問題較為復雜。而電路交換技術是面向連接的,很適合用於實時業務,其QoS問題要簡單得多。同時,與分組交換技術相比,電路交換技術實現簡單且價格低廉,易於用硬體高速實現。且由於其不需要緩沖區,而光緩沖技術似乎還比較遙遠,因此它更易於與光技術融合。當然,電路交換技術的用戶與WDM之間的流量粒度不匹配問題也有待進一步解決。如果拋開現有的設施,從頭組網的話,相信大家選擇電路交換技術的可能性要大得多。這里可以舉出一個例子對電路交換技術和分組交換技術做一個比較。假設一個伺服器通過一條1Mbit/s的鏈路與100個用戶連接,其結果如表1所示。

表1 1Mbit/s鏈路與100個用戶連接結果表:
電路交換 分組交換
帶寬 1Mbit/s 10Kbit/s
平均時延 50s 100s
最大時延 100s 100s 文章出自air_net的網路博客。http://hi..com/air_net/blog/item/a1f944d084f5d3d4572c8427.html

Ⅱ 詳細說明:光發射機的參數有哪些如何對這些參數進行測試

光發射機的構成
光發送機由輸入介面、光源、驅動電路、監控電路、控制電路等構成,其核心是光源及驅動電路。在數字通信中,輸入電路將輸入的信號(如PCM脈沖)進行整形,變換成適於線路傳送的碼型後通過驅動電路光源,或者送到光調制器調制光源輸出的連續光波。為了穩定輸出的平均光功率和工作溫度,通常要設置一個自動的溫度控制及功率控制電路。
光源的調制
我們都知道,信息的處理都是在電的領域內完成的,在光纖通信中,我們必須把電信號轉變成光信號,這樣才能在光纖上傳播。在光纖通信系統中,信息由LED或LD發出的光波所攜帶,光波就是載波,把信息載入到光波上的過程就是調制。光調制器就是實現從電信號到光信號的轉換的器件。
調制方式通常分為兩大類,即模擬調制和數字調制。
模擬調制又有兩類,一類是用模擬基帶信號直接對光源進行強度調制(D-IM);另一採用連續或脈沖的射頻(RF)波作為副載波,模擬基帶信號先對它的幅度、頻率或相位等進行調制,再用該受調制的副載波去強度調制光源。模擬調制的優點是設備簡單,佔有帶寬較窄,但它的抗干擾性能差,中繼時雜訊累積。
數字調制是光纖通信的主要調制方式,將模擬信號抽樣量化後,以二進制數字信號「1」或「0」對光載波進行通斷調制,並進行脈沖編碼(PCM)。數字調制的優點是抗干擾能力強,中繼時雜訊及色散的影響不積累,因此可實現長距離傳輸,它的缺點是需要較寬的頻帶,設備也復雜。
按調制方式與光源的關系來分,有直接調制和外調制兩種。前者指直接用電調制信號來控制半導體光源的振盪參數(光強、頻率等),得到光頻的調幅波或調頻波,這種調制又稱內調制;後者是讓光源輸出的幅度與頻率等恆定的光載波通過光調制器,光信號通過調制器實現對光載波的幅度、頻率及相位等進行調制,光源直接調制的優點是簡單,但調制速率受到載流子壽命及高速率下的性能退化的限制(如頻率啁啾等)。外調制方式需要調制器,結構復雜,但可獲得優良的調制性能,尤其適合於高速率下運用。
按被調制光波的參數分:強度調制、相位調制、偏振調制等。
目前光纖通信中應用最多的是光源的基帶直接強度調制、副載波強度調制及數字調制,高速率時採用外調制。
光源的控制電路
系統對光源的要求是很高的,包括:
1.波長穩定性要求:WDM系統對光源發射波長的穩定性具有較高的要求,波長的漂移將導致信道之間的串擾。
2.功率穩定性要求:某信道功率的漂移,不僅影響本信道的傳輸性能,而且通過EDFA的瞬態效應影響其它信道的性能。
光源的控制電路主要包括溫度控制和功率控制電路,它們的作用就是消除溫度變化和器件老化的影響,穩定發射機性能。其它的控制電路還有光源慢啟動保護電路、激光器反向沖擊電流保護電路、激光器過流保護電路和激光器關斷電路。
http://www.im08.com/html/net/fddi/index2/38465.shtml
光接收機
http://gzdzw.51.net/catv2.htm

Ⅲ 什麼是 電路租用

租用電路業來務(leased circuit service)是向客戶源提供租用的點到點承載通信信號傳輸的媒介。依託中國移動覆蓋廣泛的基於SDH、MSTP技術的傳輸網路, 能夠為客戶提供本地、跨市/省范圍的電路租用業務。

包括:2Mb/s 、4Mb/s、6Mb/s、8Mb/s 、10Mb/s 、34Mb/s 、100Mb/s、 155Mb/s 、622Mb/s 、1Gb/s、2.5Gb/s等多種帶寬,支持開展語音、數據、視頻等多種業務。

(3)電路wdm擴展閱讀

特點:

1、客戶各分支機構通過客戶側接入設備接入到我司SDH/MSTP網路中,客戶數據經過城域傳送網、傳送網路到達客戶總部所在地;同樣客戶總部通過客戶側接入設備接入到SDH/MSTP網路中,從而實現總部與各分支結構的互聯。

2、通過現有MSTP/SDH網路提供電路,可提供2M、4M、6M、8M、10M、34M、100M、155M、622M、1G、2.5G帶寬的電路出租。

3、電路租用採用SDH/MSTP接入,在干線層面採用SDH WDM方式傳送。

Ⅳ 電路交換與分組交換的區別 (越詳細越好!)

一、定義不同

1、電路交換(),是指按照需求建立連接並允許專用這些連接直至它們被釋放這樣一個過程。電路交換網路包含一條物理路徑,並支持網路連接過程中兩個終點間的單連接方式。

2、分組交換,在通信過程中,通信雙方以分組為單位、使用存儲-轉發機制實現數據交互的通信方式。

二、結構不同

1、電路交換。 其基本結構是由交換單元按照一定的拓撲結構擴展而成的,所構成的交換網路也稱為互連網路。

2、分組交換。其網路結構一般由分分組交換組交換機、網路管理中心、遠程集中器、分組裝拆設備、分組終端/非分組終端和傳輸線路等基本設備組成。

三、優缺點不同

1、電路交換。

(1)電路交換方式的優點是數據傳輸可靠、迅速,數據不會丟失,且保持原來的序列。

(2)缺點是在某些情況下,電路空閑時的信道容量被浪費。

2、分組交換。

(1)分組交換方式的優點是不同的數據分組可以在同一條鏈路上以動態共享和復用方式進行傳輸,通信資源利用率高,使得信道的容量和吞吐量有了很大的提升。

(2)缺點是有時延抖動、開銷大。

(4)電路wdm擴展閱讀

網路中的數據交換可以分為電路交換,分組交換(數據包交換)、ATM交換、全光交換,標記交換。

其中電路交換有預留,且分配一定空間,提供專用的網路資源,提供有保證的服務,應用於電話網。

分組交換無預留,且不分配空間,存在網路資源爭用,提供有無保證的服務。分組交換可用於數據報網路和虛電路網路。

Ⅳ 比較電路交換和分組交換

電路交換:由於電路交換在通信之前要在通信雙方之間建立一條被雙方獨占的物理通路(由通信雙方之間的交換設備和鏈路逐段連接而成)。

報文交換:報文交換是以報文為數據交換的單位,報文攜帶有目標地址、源地址等信息,在交換結點採用存儲轉發的傳輸方式。

區別:

1、 電路交換是以電路為目的的交換方式,即通信雙方要通過電路建立聯系,建立後沒掛斷則電路一直保持,實時性高。

而分組交換是把信息分為若干分組,每個分組有分組頭含有選路和控制信息,可以到達收信方,但是不能即時通信。

2 、分組交換通信雙方不是固定佔有一條通信線路,而是在不同的時間一段一段地部分佔有這條物理通路,因而大大提高了通信線路的利用率。

電路交換時,數據直達,不同類型、不同規格、不同速率的終端很難相互進行通信,也難以在通信過程中進行差錯控制。通信雙方之間的物理通路一旦建立,雙方可以隨時通信,實時性強。

3 、分組交換由於數據進入交換結點後要經歷存儲、轉發這一過程,從而引起轉發時延(包括接收報文、檢驗正確性、排隊、發送時間等),而且網路的通信量愈大,造成的時延就愈大,因此報文交換的實時性差,不適合傳送實時或互動式業務的數據。

電路交換連接建立後,物理通路被通信雙方獨占,即使通信線路空閑,也不能供其他用戶使用,因而信道利用低。

(5)電路wdm擴展閱讀;

電路交換

一旦電路建立,通信雙方的所有資源(包括線路資源)均用於本次通信,除了少量的傳輸延遲之外,不再有其他延遲,具有較好的實時性。從電路交換的工作原理看出,電路交換會佔用固定帶寬,因而限制了在線路上的流量以及連接數量。

電路交換方式的優點是數據傳輸可靠、迅速,數據不會丟失,且保持原來的序列。缺點是在某些情況下,電路空閑時的信道容量被浪費;另外,如數據傳輸階段的持續時間不長,電路建立和拆除所用的時間就得不償失。

由於電路交換對線路資源的獨占性,使得通信過程中,數據傳輸可靠、迅速、數據不會丟失,基本不會出現抖動現象,通信可靠性高,延時也非常小,僅僅是電磁信號傳輸時所花費的延時。

分組交換

較之電路交換對鏈路的獨占性而言,不同的數據分組可以在同一條鏈路上以動態共享和復用方式進行傳輸,通信資源利用率高,從而使得信道的容量和吞吐量有了很大的提升。因為結點到結點的單個鏈路可以由很多分組動態共享。分組被排隊,並被盡可能快速地在鏈路上傳輸

一個分組交換網路可以實行數據率的轉換:兩個不同數據率的站之間能夠交換分組,因為每一個站以它的自己的數據率連接到這個結點上。

在同一個鏈路上可以同時傳輸不同類型和規格的數據,當分組網路上有大量的分組時,可以根據設定數據傳輸的排隊機制,保證優先順序高的分組優先傳輸。當電路交換網路上負載很大時,一些呼叫就被阻塞了。在分組交換網路上,分組仍然被接受,只是其交付時延會增加。

在使用優先順序時,如果一個結點有大量的分組在排隊等待傳送,它可以先傳送高優先順序的分組。這些分組因此將比低優先順序的分組經歷更少的時延。

Ⅵ ADSL採用什麼技術FDM,TDM,WDM,是哪個。還有它是採用什麼交換電路交換,報文交換,分組交換,哪個

ADSL採用頻分復用技術,即FDM。在交換網路中屬於電路交換

Ⅶ otn線路保護分為哪幾種

下面就對OTN的幾種應用方式進行探討。 波分系統的全OTN化 根據對國內外廠家設備的調研,目前主流廠家的波分系統在線路側已基本上採用了OTN結構,並均已支持符合G.709標準的OTN介面,可以實現不同系統的互通。多數廠家支持STM-64/OTU2信號的網管指配選擇,便於實現OTU應用方式的選擇(上下業務或中繼)。在WDM系統中引入OTN介面,可以實現對波長通道端到端的性能和故障監測。OTN可以實現對多種客戶信號的透明傳送,是路由器採用10GE介面的前提條件。逐步在WDM系統中引入OTN介面,可以為未來引入大容量的OTN交叉設備做准備。 因此,標准OTN域間互通介面將是未來波分系統進行互通的主要介面形式。建議在今後的長途WDM系統建設中提出對符合G.709標准OTN介面支持的要求,要求提供標准域間互通介面OTU2(10Gbit/s)。 OTN交叉設備在長途骨幹網的應用 隨著長途IP網的發展、IP業務量的激增,長途骨幹網的核心節點面臨著越來越大的業務量;且為了更有效地使用IP網路資源,提高中繼電路的利用率或提高網路運行質量,在長途骨幹網中應用大容量的OTN交叉設備是必要的。利用大容量OTN交叉設備,可以實現大顆粒波長通道業務的快速開通,提高業務響應速度。如果能載入ASON智能控制平面,還可以提供基於ASON的多種保護恢復方式,提高骨幹傳送網的可靠性。 同時,引入OTN交叉設備可以優化現有IP網路的組網結構,大幅度節省路由器組建IP承載網路的成本。其應用方式為: *IP網路的轉接業務不再進入路由器實現中轉,而是通過OTN設備在傳輸層直接完成轉接,從而節約路由器的介面數量並降低對路由器容量的要求; *OTN設備提供的靈活保護恢復機制可以有效解決IP網路中繼電路故障問題,提高網路生存性,可以減少全部依賴路由器保護場景下的鏈路冗餘要求,提高鏈路利用率,降低IP網路的建設成本。 OTN交叉設備在城域網的應用 城域網中的情況比較復雜,相應的競爭技術也比較多。為了提高光纖利用率,在城域網/本地網中建設波分系統是必然的,基於波長級顆粒調度的OADM/ROADM是目前比較切合實際的選擇。但對於子波長顆粒GE、2.5G等業務,OADM/ROADM並不是一種很好的解決辦法。加之它本身存在的波長受限、恢復速度慢等缺陷,該方式需要與其他技術配合應用才可以實現城域網的多方面需求。 在城域網中採用OTN交叉設備,由OADM/ROADM實現波長級的調度和保護,由OTN交叉設備完成子波長級(GE,2.5Gbit/s)的調度和保護也是一種比較可行的應用方式。

Ⅷ 音效卡中經常看到的ALC和WDM是什麼有什麼區別和聯系

1、ALC,自動電平控制,是針對由於器件本身變化,環境引起工作點變化等,在電路中加入的穩定電平的電路.在一定范圍內,ALC電路自動糾正偏移的電平回到要求的數值.
例如功率ALC電路,要求輸出一定功率,由於器件由冷變熱導致放大倍數變化,功率偏離要求,ALC電路自動感知這個變化,調整迴路的參數,使得功率維持正常數值.
ALC可用於自動控制輸出給揚聲器的功率,可防止揚聲器過載並優化動態范圍。
ALC不同於傳統意義上的輸出限幅。輸出限幅功能是將輸出信號擺幅限制在預定的幅度,來保護電聲元件不因過高的峰值而損壞。結果造成輸出信號削波(失真) 。而ALC功能是通過降低增益來保護電聲元件的,不會產生失真

2、WDM(Wavelength Division Multiplexing,波分復用)是利用多個激光器在單條光纖上同時發送多束不同波長激光的技術。每個信號經過數據(文本、語音、視頻等)調制後都在它獨有的色帶內傳輸。WDM能使電話公司和其他運營商的現有光纖基礎設施容量大增。製造商已推出了WDM系統,也叫DWDM(密集波分復用)系統。DWDM可以支持150多束不同波長的光波同時傳輸,每束光波最高達到10Gb/s的數據傳輸率。這種系統能在一條比頭發絲還細的光纜上提供超過1Tb/s的數據傳輸率

Ⅸ 模擬電路的作品目錄

第一章 半導體和半導體管
導電性能介於導體與絕緣體之間材料,我們稱之為半導體。在電子器件中,常用的半導體材料有:元素半導體,如硅(Si)、鍺(Ge)等;化合物半導體,如砷化鎵(GaAs)等;以及摻雜或製成其它化合物半導體材料,如硼(B)、磷(P)、錮(In)和銻(Sb)等。
第一節 半導體基礎知識
一、導體、絕緣體和半導體
二、半導體材料分類
三、PN結及其單向導電性
第二節 半導體二極體
二極體又稱晶體二極體,簡稱二極體(diode),另外,還有早期的真空電子二極體;它是一種具有單向傳導電流的電子器件。在半導體二極體內部有一個PN結兩個引線端子,這種電子器件按照外加電壓的方向,具備單向電流的轉導性。一般來講,晶體二極體是一個由p型半導體和n型半導體燒結形成的p-n結界面。在其界面的兩側形成空間電荷層,構成自建電場。當外加電壓等於零時,由於p-n 結兩邊載流子的濃度差引起擴散電流和由自建電場引起的漂移電流相等而處於電平衡狀態,這也是常態下的二極體特性。
一、半導體二極體的結構
二、二極體的伏安特性
三、溫度對二極體特性的影響
四、二極體的主要參數
五、二極體的開關特性
第三節 硅穩壓二極體
穩壓二極體(又叫齊納二極體),此二極體是一種直到臨界反向擊穿電壓前都具有很高電阻的半導體器件。
一、穩壓管的電路符號、伏安特性及穩壓作用
二、穩壓二極體的主要參數
第四節 發光二極體、光敏二極體
一、發光二極體
發光二極體簡稱為LED。由鎵(Ga)與砷(AS)、磷(P)的化合物製成的二極體,當電子與空穴復合時能輻射出可見光,因而可以用來製成發光二極體。在電路及儀器中作為指示燈,或者組成文字或數字顯示。磷砷化鎵二極體發紅光,磷化鎵二極體發綠光,碳化硅二極體發黃光。
發光二極體 (英語:Light-Emitting Diode,簡稱LED) 是一種能發光的半導體電子元件。這種電子元件早
在1962年出現,早期只能發出低光度的紅光,之後發展出其他單色光的版本,時至今日能發出的光已遍及可見光、紅外線及紫外線,光度也提高到相當的光度。而用途也由初時作為指示燈、顯示板等;隨著白光發光二極體的出現而續漸發展至被用作照明。
LED只能往一個方向導通(通電),叫作正向偏置(正向偏壓),當電流流過時,電子與空穴在其內復合而發出單色光,這叫電致發光效應,而光線的波長、顏色跟其所採用的半導體材料種類與摻入的元素雜質有關。具有效率高、壽命長、不易破損、開關速度高、高可靠性等傳統光源不及的優點。白光LED的發光效率,在近幾年來已經有明顯的提升,同時,在每千流明的購入價格上,也因為投入市場的廠商相互競爭的影響,而明顯下降。雖然越來越多人使用LED照明作辦公室、傢具、裝飾、招牌甚至路燈用途,但在技術上,LED在光電轉換效率(有效照度對用電量的比值)上仍然低於新型的熒光燈。
二、光敏二極體
光敏二極體是將光信號變成電信號的半導體器件。它的核心部分也是一個PN結,和普通二極體相比,在結構上不同的是,為了便於接受入射光照,PN結面積盡量做的大一些,電極面積盡量小些,而且PN結的結深很淺,一般小於1微米。
光敏二極體是在反向電壓作用之下工作的。沒有光照時,反向電流很小(一般小於0.1微安),稱為暗電流。當有光照時,攜帶能量的光子進入PN結後,把能量傳給共價鍵上的束縛電子,使部分電子掙脫共價鍵,從而產生電子---空穴對,稱為光生載流子。
它們在反向電壓作用下參加漂移運動,使反向電流明顯變大,光的強度越大,反向電流也越大。這種特性稱為「光電導」。光敏二極體在一般照度的光線照射下,所產生的電流叫光電流。如果在外電路上接上負載,負載上就獲得了電信號,而且這個電信號隨著光的變化而相應變化。
光敏二極體、光敏三極體是電子電路中廣泛採用的光敏器件。光敏二極體和普通二極體一樣具有一個PN結,不同之處是在光敏二極體的外殼上有一個透明的窗口以接收光線照射,實現光電轉換,在電路圖中文字元號一般為VD。光敏三極體除具有光電轉換的功能外,還具有放大功能,在電路圖中文字元號一般為VT。光敏三極體因輸入信號為光信號,所以通常只有集電極和發射極兩個引腳線。同光敏二極體一樣,光敏三極體外殼也有一個透明窗口,以接收光線照射。
第五節 半導體三極體
一、三極體的結構、電路符號及類型
二、三極體的電流放大作用
三、三極體放大的概念和三種聯接方式
四、三極體的伏安特性曲線
五、三極體的主要參數
六、三極體參數與溫度的關系
第六節 場效應晶體管
一、結型場效應管
在一塊N型(或P型)半導體材料的兩邊各擴散一個高雜質濃度的P型區(或N型區),就形成兩個不對稱的PN結。把兩個P區(或N區)並聯在一起,引出一個電極,稱為柵極(g),在N型(或P型)半導體的兩端各引出一個電極,分別稱為源極(s)和漏極(d)。夾在兩個PN結中間的N區(或P區)是電流的通道,稱為導電溝道(簡稱溝道)。這種結構的管子稱為N溝道(或P溝道)結型場效應管。
分為N溝道結型場效應管和P溝道結型場效應管兩種。
由於結型場效應管的柵極輸入電流iG>>0,因此很少應用輸入特性,常用的特性曲線有輸出特性曲線和轉移特性曲線。
二、絕緣柵型場效應管
本章 小結
習題一
第二章 晶體管交流放大器
第一節 放大器概述
一、概述
放大器是能把輸入訊號的電壓或功率放大的裝置,由電子管或晶體管、電源變壓器和其他電器元件組成。用在通訊、廣播、雷達、電視、自動控制等各種裝置中。
增加信號幅度或功率的裝置,它是自動化技術工具中處理信號的重要元件。放大器的放大作用是用輸入信號控制能源來實現的,放大所需功耗由能源提供。對於線性放大器,輸出就是輸入信號的復現和增強。對於非線性放大器,輸出則與輸入信號成一定函數關系。放大器按所處理信號物理量分為機械放大器、機電
放大器、電子放大器、液動放大器和氣動放大器等,其中用得最廣泛的是電子放大器。隨著射流技術(見射流元件)的推廣,液動或氣動放大器的應用也逐漸增多。電子放大器又按所用有源器件分為真空管放大器、晶體管放大器、固體放大器和磁放大器,其中又以晶體管放大器應用最廣。在自動化儀表中晶體管放大器常用於信號的電壓放大和電流放大,主要形式有單端放大和推挽放大。此外,還常用於阻抗匹配、隔離、電流-電壓轉換、電荷-電壓轉換(如電荷放大器)以及利用放大器實現輸出與輸入之間的一定函數關系(如運算放大器)。
二、放大器的分類 光纖放大器不但可對光信號進行直接放大,同時還具有實時、高增益、寬頻、在線、低雜訊、低損耗的全光放大功能,是新一代光纖通信系統中必不可少的關鍵器件;由於這項技術不僅解決了衰減對光網路傳輸速率與距離的限制,更重要的是它開創了1550nm頻段的波分復用,從而將使超高速、超大容量、超長距離的波分復用(WDM)、密集波分復用(DWDM)、全光傳輸、光孤子傳輸等成為現實,是光纖通信發展史上的一個劃時代的里程碑。在目前實用化的光纖放大器中主要有摻鉺光纖放大器(EDFA)、半導體光放大器(SOA)和光纖拉曼放大器(FRA)等,其中摻鉺光纖放大器以其優越的性能現已廣泛應用於長距離、大容量、高速率的光纖通信系統、接入網、光纖CATV網、軍用系統(雷達多路數據復接、數據傳輸、制導等)等領域,作為功率放大器、中繼放大器和前置放大器。
光纖放大器一般都由增益介質、泵浦光和輸入輸出耦合結構組成。目前光纖放大器主要有摻鉺光纖放大器、半導體光放大器和光纖拉曼放大器三種,根據其在光纖網路中的應用,光纖放大器主要有三種不同的用途:在發射機側用作功率放大器以提高發射機的功率;在接收機之前作光預放大器以極大地提高光接收機的靈敏度;在光纖傳輸線路中作中繼放大器以補償光纖傳輸損耗,延長傳輸距離。
三、放大器的主要參數
四、放大器的工作原理
第二節 固定偏置共發放大電路
一、電路構成
二、固定偏置共發放大電路靜態工作點的計算
三、固定偏置共發放大電路交流參數的計算
四、放大電路的圖解法
第三節 分壓式直流負反饋放大電路
一、工作點的穩定
二、分壓式直流負反饋放大電路的計算
第四節 射極輸出器
一、電路結構
二、射極輸出器的靜態工作點
三、射極輸出器交流參數的計算
第五節 阻容耦合放大電路的頻率特性
一、放大器的頻率特性
二、單極阻容耦合放大電路的頻率特性
第六節 多級放大電路
一、級間耦合方式
二、阻容耦合多級放大器的計算
第七節 調諧放大電路
一、LC並聯諧振迴路的頻率特性
二、簡單調諧放大器
三、典型調諧放大電路和調諧放大電路的應用
第八節 場效應晶體管放大電路
一、電路構成
二、電路靜態工作點的計算
三、電路交流參數的計算
本章 小結
習題二
第三章 放大電路中的反饋
第一節 反饋的基本概念
第二節 反饋放大器的分類
一、正反饋和負反饋
二、電壓反饋和電流反饋
三、串聯反饋和並聯反饋
四、直流反饋和交流反饋
五、本級反饋和級間反饋
第三節 反饋放大器的判斷
一、確定反饋元件
二、判斷反饋類型
三、判斷反饋極性
……
第四章 直流放大電路與集成運放
第五章 低頻功率放大電路
第六章 正弦波振盪電路
第七章 直流穩壓電源
第八章 調制、解調與變頻
實驗
附錄

閱讀全文

與電路wdm相關的資料

熱點內容
廣聯達防水瀝青塗刷兩遍怎麼套 瀏覽:760
家居改造王月 瀏覽:509
家用電器罩手工教程 瀏覽:664
廣州白雲家電維修 瀏覽:755
啟德家居 瀏覽:890
蚯蚓木頭盒子怎麼防水 瀏覽:380
家用電器發生火災原因 瀏覽:598
家居空間床 瀏覽:366
復雜電路改寫 瀏覽:584
陽春傢具店 瀏覽:901
家用電器平均使用壽命10 瀏覽:466
出風口方向調節維修要多少錢 瀏覽:329
紅米海口維修點 瀏覽:809
並聯型電路 瀏覽:411
自行車電瓶如何維修 瀏覽:176
國家電網簡歷社會實踐怎麼填 瀏覽:367
找家電代理需要注意哪些 瀏覽:504
管道穿基礎為什麼加防水套管 瀏覽:359
木材傢具用什麼塗料好 瀏覽:621
南通格力空調售後維修 瀏覽:559