導航:首頁 > 電器電路 > 電路優化方案

電路優化方案

發布時間:2021-11-22 12:13:17

① 大家看看我的電路圖怎麼優化

穩壓管是並聯使用的
不是你 這樣串聯的
U2前濾波必須加電容並聯,

② 如何優化RF電路設計

RF電路篇:降低功放耗電量,關注包絡跟蹤

在用於智能手機通信的無線電路(RF電路)中,旨在降低耗電量的技術開發也十分活躍。這是因為,就峰值功率而言,僅RF電路就會消耗2W左右的電力,所以還存在著很大的削減空間。
RF電路中消耗電力最大的是發送部用來放大信號的功率放大器(PA)。在終端和基站處於遠距離等情況下時,信號峰值會在瞬間消耗1.5W左右的電力(圖18)。因此在RF電路中,如何削減PA的耗電量成了關注的焦點。

圖18:RF電路的對策
智能手機的RF電路中,耗電量最大的是功率放大器(PA)。例如LTE在以23dBm輸出時,僅功率放大器就會瞬間消耗1.5W左右的電力(a)。因此,要想降低RF電路的耗電量,提高PA的效率以及通過周邊技術降低損耗至關重要(b)。(圖18:(a)由本刊根據澳大利亞新南維爾士大學和英國Nujira公司的資料製作)
削減耗電量的關鍵在於提高PA的功率附加效率*和降低周邊技術的電力損耗(圖18(b))。
*功率附加效率(PAE:power added efficiency)=表示PA的實際輸出信號電力(從輸出信號電力中減去輸入信號電力的值)與電源載入的直流電力的比率。
PA的功率附加效率因採用的通信方式而異。比如,用於GSM方式通信電路的PA有望達到50%以上的效率,而用於W-CDMA方式的PA最大為40%左右,至於LTE由於尚未進行充分優化等,最大效率只有35%左右。也就是說,LTE終端中用於PA的輸入功率有65%以上被浪費了(化為熱量等)。
多頻阻礙效率提高
今後將成為主流的LTE方式智能手機的PA要想提高功率附加效率無比困難。理由在於多頻化的推進。
LTE方式的智能手機為了能在世界各地使用,標配了國際漫遊功能。因此,RF電路必須支持多個頻率(多頻化)。如果PA和濾波器等RF電路的個別部件根據支持頻率的數量來安裝,部件個數就會增加,導致安裝面積增大,成本也會增加。為了避免這種情況,LTE終端的主流是利用可在一個封裝中支持多個頻率的多頻產品(圖19)。「很多終端廠商打算在RF電路中以多模和多頻部件的使用為主」(村田製作所執行董事、模塊事業本部副本部長中島規巨)。

圖19:通過多頻產品削減安裝面積
採用多頻型功率放大器(PA)的話,即使支持的頻帶數增加,安裝面積也不會增加。(本站根據三菱電機的資料製作)
村田製作所的多頻型PA與單一頻帶(單頻)產品相比,不容易提高效率。所支持的放大頻帶數量越多,功率附加效率越難以提高,二者屬於此消彼長(Trade-off)的關系 注1)。
注1) 多頻型PA一般採用廣帶型放大電路,與特定頻帶具備放大特性的單頻型相比,效率值容易下降。
包絡跟蹤技術亮相
作為提高LTE終端多頻型PA效率的技術,備受關注的是對輸入PA的電源電壓進行細微控制的「Envelope Tracking(包絡跟蹤)」。
包絡跟蹤是對PA的電源電壓進行極其細微的動態調節的技術。此前一直利用以發送信號的1個時隙為單位切換PA電源電壓的方法「Average Power Tracking」。而包絡跟蹤則追蹤信號振幅(信號電力),以更小的時隙切換電源電壓,由此在輸出時會選擇效率最高的電源電壓進行發送(圖20)。

圖20:追蹤信號波形,細微控制電壓
無電壓控制、Average Power Tracking以及Envelope Tracking時的時間軸信號波形示意圖。粉線表示電壓值水平,粉色區域表示發熱(多餘的電力消耗)。(圖由本刊根據Nujira公司的資料製作)
PA的功率附加效率對電源電壓和發送電力有依賴性,因此如果能根據發送電力切換電源電壓,在理想狀態下能一直選擇最大效率點,可以減少多餘的電力消耗。通過組合使用該技術,彌補了多頻型PA效率降低的缺點。
包絡跟蹤有多種實現方法,最常用的是從輸入信號波形中提取振幅的形狀,然後將所需的偏置信號輸入PA的方法(圖21)。此時採用的旨在載入最佳偏壓的控制IC由歐美風險企業開發。

圖21:包絡跟蹤的控制電路
從輸入信號波形生成偏置信號波形,利用偏置信號波形對輸入功率放大器(PA)的電源電壓進行微細控制。根據PA的輸出改變電源電壓,由此能以最高效率的電壓驅動。(圖由本刊根據三菱電機的資料製作)
大幅削減耗電量
例如,如果使用英國Nujira公司供貨的包絡跟蹤用控制IC,耗電量可較未使用時削減40%~55%(圖22)。「與W-CDMA等相比,動態范圍較大的LTE能進一步降低耗電量」(Nujira公司現場應用經理Tamas Vlasits)。

圖22:包絡跟蹤的效果
Nujira公司的包絡跟蹤控制IC「NCT-L1100」封裝在4mm見方的BGA等中(a)。W-CDMA、HSUPA及LTE在23dBm輸出時的RF電路耗電量。導入包絡跟蹤技術,大幅降低了PA的耗電量。LTE的話可削減55%的耗電量(b)。(圖由本刊根據Nujira公司的資料製作)
包絡跟蹤用控制IC插入PA和RF收發器IC(或基帶處理LSI)之間使用。控制IC通過符合MIPI(Mobile Instry Processor Interface)標準的晶元間介面等控制 注2)。
注2) MIPI Alliance於2011年11約成立了旨在制定包絡跟蹤專用介面標準的工作組。預定製定從RF收發器IC或基帶處理LSI收發包絡信號的信號線標准。
在包絡跟蹤用控制IC領域另一家較受關注的公司是美國Quantance。該公司將自主開發的技術命名為「qBoost」,計劃與PA廠商合作擴大技術的應用范圍。該公司稱,利用該技術可將功率附加效率提高至50%左右。
Quantance已經與三菱電機展開了合作。三菱電機前不久發布了尺寸僅3mm見方、可放大6頻帶的PA,設想與包絡跟蹤技術組合使用。組合使用後可確保最大40%的效率(圖23)。

圖23:支持6個頻帶,可確保40%的效率
三菱電機開發的GaAs制PA尺寸只有3mm×3mm×1mm(a)。功率附加效率在1.7G~2GHz的6個頻帶中最大可確保40%(b)。(圖由本刊根據三菱電機的資料製作)
將來計劃配備於RF IC
包絡跟蹤技術不僅可以利用上述專用控制IC來支持,在不久的將來還計劃嵌入RF收發器IC等使用。富士通半導體預定2012年5月上旬開始樣品供貨配備包絡跟蹤控制功能的多模及多頻型RF收發器IC「MB86L11A」。這是業界首款配備包絡跟蹤控制功能的RF收發器IC。此外,美國高通公司等從事智能手機晶元組業務的大企業好像也都在考慮標配該技術。
不過,包絡跟蹤也存在課題。由於電源電壓高速切換,信號的失真特性會劣化,相鄰通道的漏電功耗可能會增大。作為解決對策,瑞薩電子通過提前使發送信號失真(預失真)減輕了劣化,瑞薩電子認為「需要探討類似的補償技術」。
提高元件自身的效率
還有廠商打算通過提高PA元件自身的特性來提高效率,以降低耗電量。例如美國威訊聯合半導體(RF Micro Devices)於2012年2月底發布了可將LTE發送時的功率附加效率提高至42~44%左右的PA「ultra-high efficiency PA」 注3)。
注3)可用於放大W-CDMA的頻帶1、2、3、4、5、8,以及LTE的頻帶4、7、11、13、17、18、20、21。
另外,富士通半導體2011年底開始供貨多頻型PA,通過在PA元件中利用與富士通研究所共同開發的高耐壓晶體管「EBV-Transistor」提高了效率。這是一款利用CMOS技術設計的PA,能夠通過一個封裝支持W-CDMA和HSPA利用的3個頻帶的放大(圖24)。據富士通半導體介紹,使用頻率較高的中低輸出時的效率非常高。

圖24:富士通的CMOS制PA支持3個頻帶
富士通半導體開發的CMOS制PA利用一枚晶元實現了W-CDMA/HSPA的頻帶Ⅰ(2.1GHz頻帶)、頻帶Ⅴ(850MHz頻帶)、頻帶Ⅸ(1.7GHz頻帶)的放大。尺寸為4mm×3.5mm×0.7mm。
減少反射波降低耗電量
另外還有不在PA上下工夫,而是通過導入RF電路的周邊技術來降低電力損耗的案例,比如插入隔離器來減少反射波。
隔離器是僅通過單向信號的部件,如果在PA和天線之間插入隔離器,可以阻止從天線側逆流進入的信號。
最近的智能手機天線一般設置在機身側面等,天線阻抗會隨著用戶握持方法的不同而大幅變動。因此,RF發送部會產生阻抗不匹配現象,從而導致PA的輸出信號作為反射波返回,這會使S/N惡化。
反射越多,PA的發送電力越大,所以會導致耗電量的增加。插入隔離器可以去除反射波,從而降低耗電量。
使用隔離器會導致部件數量增加。因此,海外的終端廠商大都不願意採用。不過開發商期待,隨著對降低RF電路耗電量的關注度越來越高,採用的海外終端廠商也會增加。比如,隔離器開發企業之一村田製作所開發出了將PA、濾波器以及隔離器(穩定器)收納在一個封裝內的PA模塊,並且已開始供貨(圖25)。該公司通過集成化縮小了產品尺寸,並以此為優勢向日本國內外的終端廠商積極促銷。

③ 電路能否優化

下圖是你做的所謂優化??
如果 DC_IN與VCC_50的電壓值相近就可以,相差超過3V以上就不可以了;電壓高的那個場效應管就有可能關不死而仍然處在弱導通狀態;

④ 如何對所設計的集成電路進行優化設計

首先應看是數字集成電路還是模擬集成電路的優化
如果是數字集成電路,通常是對功耗和速度進行優化,主要是對晶體管尺寸和門電路結構進行調整
如果是模擬集成電路,就要看你的設計目標是什麼了,模擬的性能參數有很多,增益、功耗、雜訊等等,他們之間都是存在折衷關系的,不可能同時都達到最好,要根據你的設計目標進行優化

⑤ 從哪幾方面優化電路設計

1.客戶需求分析:我覺得這點很重要,往往很多工程師都不注意,沖沖忙忙設計,做完了才發現設計出來的東西不是客戶要的東西,或沒完全達到客戶的要求,所以客戶需求分析到設計說明書一定要做細,把每個需求弄清楚。包括產品電壓、功耗、溫升、認證等。
2.原理設計:在滿足客戶需求前提下,檢查原理圖中每個功能模塊的設計參數,滿足參數的前提下檢查每個元器件品牌型號,保證參數前提下減少冗餘,選擇更低價格、更方便采購的品牌和型號,以提高產品價格和假貨速度方面的競爭力。
3.PCB布局:要根據布局規則和信號完整性逐條檢查。
4.結構檢查:設計的板子能否順利裝配到外殼里,往往是被很多電子工程師忽略的事情,設計出來的東西通常無法裝配到外殼里,或外殼空間太小、沒有考慮散熱等。

⑥ 電路創新設計高手給幾個方案

那就要用完全不延時的、靈敏度超前、手感空前的下一代鍵盤,國際市場上還沒有商品,終將要出現!
如果你能將其送上2010年上海世博會、每年的德國漢諾威信息展覽會、每年8月份德國柏林國際消費電子展IFA,可以借用。
中國人在1982年提出的,本人下崗,就不堅持了,昨天還有西洋人來參觀過,向他展示了核心圖紙,全模擬計算機控制的,關鍵材料國產。
這就是宣傳奧運,展現中國的實力!

這個鍵盤吧

樓上說的是1980年時期的IBM公司286型、386型號計算機用的鍵盤,是機械鍵盤,當時都是原裝進口,後來國內基本未生產過,現在有少量走私的舊機械鍵盤,比普通鍵盤要貴很多,其結構合理,製作成本高,舊的可以是50元一個,新的一般要上千元為公道。
相比之下,現在的鍵盤都是低成本製造,就普通的花膠(指的是透明或半透明和軟的膠,硅橡膠就是其中一種,薄膜接觸鍵盤內部用的結構件,產生鍵向上復位彈力,將所有的鍵結構連接在一起)而已。
昨天,一個有長期工作經驗的斯坦福大學畢業的碩士到本人家裡來作客,這個西洋人能明白本人的下一代鍵盤的性能。
你上網路檢索就是了。
國際上還沒有商品,其造價一萬元還下不來,作為奢侈品合適,是中國創新核心價值的體現,是創意設計和產業結構轉型的範例,是民族精神的象徵,是獨立創新的象徵,具有明確的和不可替代的政治含義。
打的是品牌,就是要強勢展現,要做高端市場。
國內的聯想、騰訊、新浪等等CEO自己不做,本人也不會認真做這些活,點到就可以了。
如果有人能將其送上2010年上海博覽會、每年的德國漢諾威信息展覽會、每年8月份德國柏林國際消費電子展IFA,本人可以自費製造,國內的專用鍵盤製造商和普通鍵盤製造商都參加這些展覽會,他們只關心訂單,無所謂企業文化,本人何必認真?
那個西洋碩士能當場看懂本人的鍵盤控制模擬計算機的局部單元部分,現在國內名牌大學的對口專業博士後卻不懂,本人何必較真?
如果毛澤東、周恩來在世,一定有生機。現請示僑辦主任。

西洋人的精髓,亞洲人能吃透嗎?
他宣傳了中國在鋼琴上的創新了嗎?
他將中國人製造的原型帶到國際音樂會上和國際樂器展覽會上了嗎?
是否愛國、是否堅持原則、有無民族氣節,一測試就暴露無遺了!
這要產生鍵盤完整的標准、新的演奏方法、律制、音效的變革等等。
本人對到中國的外國樂器人士、工程技術人員面對面地宣傳中國的獨創,叫板歐美人士!

鋼琴的質量主要取決於哪個零件的質量
這是整體質量所決定的。
各部分的木材處理的工藝、費用。
基本結構就決定了音質,例如音板、琴弦、鋼骨架、梁的結構方式,這就是西方工業發達國家的工業基礎、文化積淀,企業的核心技術,不是實行各種技術標准,花上2萬元一天請西方的鋼琴技師就能學到的,例如,國際上有鋼琴技師協會,那裡的技師都花錢請來,而真本事是學不到的。
中國人都在國外鋼琴企業見到人家的擊弦機構、鍵盤是在消聲室內調整的,國內就完全沒有這個必要,技師也沒有這個水平和耐心,而且中國加工質量也犯不著再修整。
就算是國外生產的鋼琴,你踩下踏板,壓制弦的振動,都能聽見擊弦機構、鍵盤的沖擊噪音,你平時不在意而已。而且,不同的擊鍵力度和擊鍵方式,這個噪音的特點和大小也在變化之中。
現在中國的琴錘國家標准就十分簡單,更不要提擊弦機構、鍵盤的標准了,如何制定完善的標准,研製出完整的檢測儀器,這就要看××××****洋&&&&同志的改革魄力了。

⑦ 怎樣設計電路方案

分兩步:

1、掌握基礎的電子電路理論,最基礎的書要看,比如《模擬內電子電路》、《數容字電子電路》。

2、然後就是多看多積累一些基礎的電路,基礎電路容易理解,看多了之後,設計電路方案就像搭積木一樣,非常簡單。

這篇文章做了論述《設計手勢控制的LED燈:掌握基礎電路後,設計電路就是搭積木》

⑧ pspice 電路優化問題

搭建電路需要找到這些元件對應的庫,將庫添加進工程文件然後就能搭電路了。內。。貌似只用analog、容special庫和變壓器的庫。。。。。。

樓主是想通過改變電容值讓輸出電壓達到最大對嗎?
這個用全局掃描就可以了,
樓主先在special庫里調出來PRAM,然後把電容換成Cbreak,再將電容參數值設置為全局變數Cv。在PRAM里添加Cv變數,對全局參數Cv進行掃描,然後看輸出隨Cv的變化情況,應該能找到最優值。

如果只是想微調電容進行優化,用PspiceAA,還是換成Cbreak,設置容差,選擇目標函數為Vmax,然後進行靈敏度分析,分析之後就能優化了。

樓主如果想要具體的Pspice用法圖解的話,給個郵箱,我截圖發給你。

閱讀全文

與電路優化方案相關的資料

熱點內容
家電維修光碟 瀏覽:555
測量轉化電路 瀏覽:562
報考國家電網的大學有哪些條件 瀏覽:113
車在水裡怎麼防水 瀏覽:307
密室電路圖 瀏覽:254
汽車量缸四級維修量缸怎麼量 瀏覽:636
vca電路 瀏覽:145
上電電路 瀏覽:593
北京東城區燃氣灶維修電話 瀏覽:854
重慶海信電視售後維修 瀏覽:668
方波展寬電路 瀏覽:758
維修電工怎麼打廣告 瀏覽:736
一次性牙刷如何做防水 瀏覽:44
做功電路 瀏覽:362
明代傢具為什麼那麼多 瀏覽:784
陽台推開門防水怎麼做 瀏覽:741
地磚深顏色配什麼顏色的傢具 瀏覽:453
判斷電路饋電 瀏覽:434
中式家居酒櫃 瀏覽:603
維修工應該發哪些勞保用品 瀏覽:309