A. 高頻非線性電路幾種常見的分析方法中,普遍適用的什麼法
方程分析法
B. 高頻振盪電路測試的分析原理
振盪器簡單地說就是一個頻率源,一般用在鎖相環中。詳細說就是一個不需要外信號激勵、自身就可以將直流電能轉化為交流電能的裝置。一般分為正反饋和負阻型兩種。
所謂「振盪」,其涵義就暗指交流,振盪器包含了一個從不振盪到振盪的過程和功能。能夠完成從直流電能到交流電能的轉化,這樣的裝置就可以稱為「振盪器」。
C. 電路分析一道高頻電路的題目,有圖,求大神
1)按襲表達式就是個雙邊帶調幅信號;
2)調制信號頻率 F = 5*10^3 Hz = 5KHz,載波頻率 Fo = 10^6 Hz = 1MHz;
3)帶寬 BW=2F=10KHz;
4)將還原為一個單音頻信號;
D. 高頻電路原理與分析總結論文
關鍵詞是反映論文主題概念的詞或片語,通常以與正文不同的字體字型大小編排在摘要下方。一般每篇可選3~8個,多個關鍵詞之間用分號分隔,按詞條的外延(概念范圍)層次從大到小排列。
關鍵詞一般是名詞性的詞或片語,個別情況下也有動詞性的詞或片語。
應標注與中文關鍵詞對應的英文關鍵詞。編排上中文在前,外文在後。中文關鍵詞前以「關鍵詞:」或「[關鍵詞]」作為標識;英文關鍵詞前以「Key words:」作為標識。
關鍵詞應盡量從國家標准《漢語主題詞表》中選用;未被詞表收錄的新學科、新技術中的重要術語和地區、人物、文獻等名稱,也可作為關鍵詞標注。關鍵詞應採用能覆蓋論文主要內容的通用技術詞條。
2.選擇關鍵詞的方法
關鍵詞的一般選擇方法是:由作者在完成論文寫作後,從其題名、層次標題和正文(出現頻率較高且比較關鍵的詞)中選出來。
論文正文
要點
⑴引言:引言又稱前言、序言和導言,用在論文的開頭。引言一般要概括地寫出作者意圖,說明選題的目的和意義,並指出論文寫作的范圍。引言要短小精悍、緊扣主題。
〈2)論文正文:正文是論文的主體,正文應包括論點、論據、論證過程和結論。主體部分包括以下內容:
a.提出問題-論點;
b.分析問題-論據和論證;
c.解決問題-論證方法與步驟;
d.結論。
為了做到層次分明、脈絡清晰,常常將正文部分分成幾個大的段落。這些段落即所謂邏輯段,一個邏輯段可包含幾個小邏輯段,一個小邏輯段可包含一個或幾個自然段,使正文形成若干層次。論文的層次不宜過多,一般不超過五級。
E. 高頻電路和射頻電路和微波電路有什麼區別和聯系
射頻的范圍是3KHz-300GHz. 其中的300MHz-300GHz是微波頻段。也就是說微波占據了射頻范圍的"高頻"部分。
對於微波電路而內言,傳統的基爾容霍夫(Kirchhoff)電流電壓定律已不再適用。對微波電路的分析需要回到電磁場理論,即4組麥克斯韋爾方程(Maxwell). 微波基礎理論包括:傳輸線理論和波導,微波網路分析,阻抗匹配等。
至於「高頻電路」的概念比較寬泛。不同場合對「高頻」這一概念有不同的理解。幾MHz的高頻電路,傳統的電路分析還是適用的。
F. 比較專業的解釋一下高頻模擬電路,低頻模擬電路和數字電路
首先關於數電和模電:先一句話概括模電 就是處理模擬信號的電路,數電 就是處理數字信號的電路。
由自然界 產生的信號 ,基本是模擬信號(比如我們聽到一段聲音,看到的一段圖像),他是時變信號,這種信號在他的度量連續范圍內,可以取得 任意值。
而數字信號也是時變信號,但他在任意時刻只呈現兩種離散值(可以定義為"0"和"1",,或者"真"和"假",或者"開","關"等等任意定義)中的 一個值!
然而數字系統的原始輸入並不是剛好是 0,1或者 真、假 這樣的邏輯輸入。而是把真實模擬信號量化。也就是規定一定范圍的信號為「0」,規定一段信號的范圍為「1」,即 稱為劃定了門限。
這樣把模擬量轉化成邏輯量,按一定編碼規則記錄了真實的模擬信息。
所以數字電路電路的本質其實就是 開關電路 因為用 開和關 就可以表示兩個邏輯信號。數電的最基本器件——門電路,就是由開關電路組成的。
所以數電與模電相比的主要優勢在:
1.數字系統更易於設計:因為開關電路不必考慮 精確的電流電壓大小值,只考慮高低也就是范圍。
2.精度高,抗干擾性強:信號數字化保存之後,精度不會損失。比真實模擬信號好保存。
3.可編程性好:模擬電路也可編程,但不用想也知道會多復雜。。。
4.集成度更高:開關電路比 千遍萬化的模擬電路更容易集成化,沒有那麼多電容、電感等元件 ,主要有 CMOS晶體管組成,集成成本低。易於保存。
同樣數電有明顯缺點:
1.現實世界 主要是模擬量;
2.處理數字信號花費時間:要采樣、量化、編碼。。。。
經過以上分析已經能夠發現一個問題了,那就是
一個數字系統輸入是真實模擬信號,同樣人在接受數字系統的輸出信號 也只能識別經過解碼還原出來模擬的信號。
其實這輸入和輸出的模擬信號也不是真正的原始真實世界的信號 是必須經過加工,處理了的模擬信號。簡單說模擬信號也必須滿足一定條件才能 進行數模 、模數轉換。
所以事實證明 不管數字電路如何先進 ,模擬電路的作用很難,甚至不可能被相應的數字電路所替代!
關於高頻和低頻:
首先電路設計的高頻和無線電通信里劃分的那個高頻電磁波(HF波段)是兩碼事!
為什麼電路里要分高頻,低頻? 因為:
1.高頻時半導體元件元件特性會與低頻時候發生改變:高頻信號下,半導體的PN結形成空間電荷區里,空間電荷因為PN結外加電壓變化而快速變化,引起充放電效應明顯, 即產生了在低頻下可忽視的PN結電容效應,直接導致電路發生了改變,低頻電路的晶體管電路模型不再適用。
2.在高頻時候,電子元件產生的雜訊影響會加劇。高頻和低頻時的雜訊類型也不同。模擬電路里雜訊處理是非常重要的一環。
3.高頻產生的電共振效應,即諧振現象,引出了有別於低頻的電路設計方式。
4.元件寄生效應:類似PN結電容效應那樣 頻率搞到一定程度導線之間,導線和電路板之間,以及各元件之間,也會引起電容效應。同時高頻產生磁場效應,使得 導線自身、各元件自身會產生寄生電感效應。
5.趨膚效應:當通過導體的電流頻率升高,產生交變磁場,由洛倫茨作用產生了阻礙電流變化的感應電場,有磁場分布關系可以知道這個感應電場在導體中心最強,而趨於導體表面減弱。這導致了高頻時導體電流只能在導體表面傳播,交流電阻變大。
6.高頻輻射效應:頻率高到一定程度 由於能量輻射到空氣中,電流減小,相當於高頻電阻增加。
那麼究竟什麼是高頻呢?電路里高於音頻(20k)就是高頻,他的上限是個什麼范圍呢?其實他沒有確定的范圍!
一種看法是 只要還能用集總參數,即 電「路」的方法來分析電路就仍然是高頻。
也就是說他是一個相對的概念。
我們知道當電路的幾何尺寸與信號的波長長度相當時
傳統電路的集總參數電路定律(如歐姆定律等)就不再適用了,這時候要用麥克斯韋方程組的方法來分析電路。
但是,假如:對於 頻率 3GHZ 的微波信號 (波長 = 光速/頻率),波長為10毫米 。
如果把電路幾何尺寸做的非常小,電路集成在不到10毫米的基片上 ,
使得電路幾何尺寸任然可以遠小於信號波長
那麼我們仍然可以用 「路」的方法來分析電路。
所以"高頻"在電路里是個模糊概念。
至於數字電路里 我已經揭示了 數字電路本質是開關電路 ,我們不用頻率高低來劃分,而用 開關 的速度來劃分,即常聽到 「高速、低速」數字電路的說法了。
但事實上高速數字電路與模擬高頻電路確實存在知識的交叉點。
以上OVER!
補充問題回答:頻率當然是電路所處理的信號頻率了(電路里信號可以是電壓也可以是電流形式,甚至電磁波的形式,具體看什麼樣的電路啦)
總之電路設計的高頻就是20khz以上的信號,至於上限范圍是沒有確定義,是相對的概念,所以高頻的范圍很大的。
無線電波里高頻 商業劃分的 HF波段: 3M-30M HZ 的電磁波
G. 基射高頻等效電路分析
增益摺合成兩部分,首先是基礎電路放大的增益,其次是高頻之後的衰減,所以兩個相乘就構成總的增益。可以理解成是兩級電路級聯起來(雖然實際上是同一級)
理想電壓源沒有內阻,所以算等效阻抗的時候可以發現其實是一個簡單的串並聯組合。
H. 高頻電路原理與分析課後習題答案
這個是一個典型高頻放大的電路 但是我有許多地方不清楚
想請教各位
1。這一個放大是有調諧的嗎 是的話 哪些元件參與調諧
2。C4 C5是上級調諧的吧 應該不參與本及的調諧 對嗎?
3。輸出低通是L3 和C3吧 C2 是否參與低通??
4。L1的作用是不是和L4一樣 扼流作用的?
5。還請幫我分清 那些是輸入匹配迴路 那些是輸出低通 那些是本及調諧 元件?
書上只分析 傳統的 並聯調協迴路的東西
這個我還是要請教大家~!~!!!!!
上傳的圖像
I. 高頻電路和射頻電路有什麼區別
射頻的范圍是3KHz-300GHz. 其中的300MHz-300GHz是微波頻段。也就是說微波占據了射頻范圍的"高頻"部分。
對於微回波電路而言,傳統的基答爾霍夫(Kirchhoff)電流電壓定律已不再適用。對微波電路的分析需要回到電磁場理論,即4組麥克斯韋爾方程(Maxwell). 微波基礎理論包括:傳輸線理論和波導,微波網路分析,阻抗匹配等。
至於「高頻電路」的概念比較寬泛。不同場合對「高頻」這一概念有不同的理解。幾MHz的高頻電路,傳統的電路分析還是適用的。