Ⅰ 復位電路的作用是什麼
復位電路的作用就是使微控制器在獲得供電的瞬間,由初始狀態開始工作。若微控制器回內的隨機答存儲器、計數器等電路獲得供電後不經復位便開始工作,可能某種干擾會導致微控制器因程序錯亂而不能正常工作,為此,微控制器電路需要設置復位電路。復位電路由專門的集成電路或分立元件組成,有些微控制器採用高電平復位(即通電瞬間給微控制器的復位端加入一高電平信號,正常工作時再轉為低電平),也有些微控制器採用低電平復位(即通電瞬間給微控制器的復位端加入一低電平信號,正常工作時再轉為高電平),這是由微控制器的結構決定的。
Ⅱ 51單片機「上電/按鍵復位電路」的原理及其電容C的作用
我認為說法1正確:51單片機是高電平復位,所以先看給單片機加5V電源(上電)啟動時的情況:這時電容充電相當於短路,你可以認為RST上的電壓就是VCC,這是單片機就是復位狀態。隨著時間推移電容兩端電壓升高,即造成RST上的電壓降低,當低至閾值電壓時,即完成復位過程。
如果按下SW,的確就是按鈕把C短路了,這時電容放電,兩端電壓都是VCC,即RST引腳電壓為VCC,如果超過規定的復位時間,單片機就復位了。當按鈕彈起後,RST引腳的電壓為0,單片機處於運行狀態。
51單片機復位要求是:RST上加高電平時間大於2個機器周期,你用的12MHz晶振,所以一個機器周期就是1us,要復位就加2us的高電平即可。
圖中的RC常數是51K×1uF=51ms,即51毫秒,這個常數足夠大了。
Ⅲ 復位電路原理圖
(1)復位電路之一。所示是微控制器中的一種實用復位電路。電路中,A105是機芯微控制器集成電路,A101是主軸伺服控制和數字信號處理集成電路, A104是伺服控制集成電路。
微控制器實用復位電路之一
這一電路的工作原理是這樣:在電源接通後,+5 V直流電壓通過電阻R216和電容C128加到集成電路A105的復位信號輸入引腳⑨腳,開機瞬間由於電容C128兩端的電壓不能突變,所以A105的⑨腳上是高電平,隨著+5 V直流電壓對C128充電的進行,⑨腳的電壓下降。
由此可見,加到集成電路A105的復位引腳⑨腳上的復位觸發信號是一個正脈沖。這一正脈沖復位信號經集成電路⑨腳內電路反相處理,使內電路完成復位。
重要提示
這一復位電路在使集成電路A105復位的同時,A1的⑥腳還輸出一個低電平復位脈沖信號,分別加到集成電路A101的復位信號輸入端16腳和集成電路A104的復位信號輸入端①腳,使A101和A104兩個集成電路同時復位。
(2)復位電路之二。所示是微控制器中的另一種實用復位電路。電路中, A1是微控制器集成電路,其42腳是電源引腳,33腳是復位引腳。
這一電路的工作原理是這樣:在電源開關接通後,+5 V直流電壓給集成電路A1的電源引腳42腳供電,當電源開關剛接通時,+5 V 電壓還沒有上升到穩壓二極體VZ1 的擊穿電壓,所以VZ1處於截止狀態,此時VT1管截止,這樣+5 V電源電壓經電阻R3加到VT2管的基極,使VT2管飽和導通,其集電極為低電平,即使集成電路A1的復位引腳33腳為低電平。
實用復位電路之二
隨著 +5 V 電壓升到穩定的 +5 V 後,這一電壓使穩壓二極體VZ1擊穿,導通的VZ1和R1給VT1管的基極加上足夠的直流偏置電壓,使VT1飽和導通,其集電極為低電平,這一低電平加到VT2管的基極,使VT2 管處於截止狀態,這樣+5 V 電壓經電阻R4加到復位引腳33腳上,使33腳為高電平。
通過上述分析可知,在電源開關接通後,復位引腳33腳上的穩定直流電壓的建立滯後一段時間,這就是復位信號,使集成電路A1的內電路復位。
斷電後,電容C1充到的電荷通過二極體VD1放掉,因為在電容C1上的電壓為上正下負,+5 V 端相接於接地,C1 上的充電電壓加到VD1上的是正向偏置電壓,使VD1導通放電,將C1中的電荷放掉,以供下一次開機時能夠起到復位作用。
(3)復位電路之三。所示是微控制器中的另一種實用復位電路。電路中, A1是微控制器集成電路,其41腳是電源引腳, 24腳是復位引腳,VZ002是穩壓二極體,VT002是PNP型三極體。
Ⅳ c51單片機復位電路的工作原理
如S22復位鍵按下時:RST經1k電阻接VCC,獲得10k電阻上所分得電壓,形成高電平,進入「復位狀態」
當S22復位鍵斷開時:RST經10k電阻接地,電流降為0,電阻上的電壓也將為0,RST降為低電平,開始正常工作
(4)復位電路目的擴展閱讀:
復位電路是一種用來使電路恢復到起始狀態的電路設備,它的操作原理與計算器有著異曲同工之妙,只是啟動原理和手段有所不同。復位電路,就是利用它把電路恢復到起始狀態。就像計算器的清零按鈕的作用一樣,以便回到原始狀態,重新進行計算。
和計算器清零按鈕有所不同的是,復位電路啟動的手段有所不同。一是在給電路通電時馬上進行復位操作;二是在必要時可以由手動操作;三是根據程序或者電路運行的需要自動地進行。復位電路都是比較簡單的大都是只有電阻和電容組合就可以辦到了,再復雜點就有三極體等配合程序來進行了。
單片機復位電路主要有四種類型:
(1)微分型復位電路:
(2)積分型復位電路:
(3)比較器型復位電路:
比較器型復位電路的基本原理。上電復位時,由於組成了一個RC低通網路,所以比較器的正相輸入端的電壓比負相端輸入電壓延遲一定時間.而比較器的負相端網路的時間常數遠遠小於正相端RC網路的時間常數。
因此在正端電壓還沒有超過負端電壓時,比較器輸出低電平,經反相器後產生高電平.復位脈沖的寬度主要取決於正常電壓上升的速度.由於負端電壓放電迴路時間常數較大,因此對電源電壓的波動不敏感.但是容易產生以下二種不利現象:
(1)電源二次開關間隔太短時,復位不可靠:
(2)當電源電壓中有浪涌現象時,可能在浪涌消失後不能產生復位脈沖。
為此,將改進比較器重定電路,如圖9所示.這個改進電路可以消除第一種現象,並減少第二種現象的產生.為了徹底消除這二種現象,可以利用數字邏輯的方法和比較器配合,設計的比較器重定電路。此電路稍加改進即可作為上電復位和看門狗復位電路共同復位的電路,大大提高了復位的可靠性。
Ⅳ 單片機復位電路問題
我認為 絳紅的藍 同學 說的不太好。
電容確實可以起到按鍵去除抖動的作用,但是這版里的電容還有一個更重要的作權用就是上電復位,因為考慮到晶元剛剛上電時由於供電不穩定而做出錯誤的計算,所以增加一個上電復位以達到延時啟動CPU的目的,使晶元能夠正常工作。雖然現在很多晶元自帶了上電延時功能,但是我們一般還是會增加額外的上電復位電路,提高可靠性。
上電復位是如此工作的,此時不用考慮按鍵和你圖中1K電阻的作用。上電瞬間,電壓VCC短時間內從0V上升到5V(比方說5V),這一瞬間相當於交流電,電容相當於導線,5V的電壓全部加在10K電阻上,也就是說,這時RST的電平狀態為高電平。但是從上電開始,電容自己就慢慢充電,其兩端電壓呈曲線上升,最終達到5V,也就是說其正端電位為5V,負端電位為0V,其負端也就正好是RST,此時RST為低電平,單片機開始正常工作。
添加按鍵是為了手動復位,一般那個1K電阻可以不加。當按鍵按下時,電容兩端構成迴路並放電,使RST端重新變為高電平,按鍵抬起時電容又充電使RST變回低電平。
Ⅵ 請問:單片機復位電路為什麼要用到電容用電阻替代E1不行嗎謝謝!
電容的主要目的是延時。
不用電容,按鍵的時候會有抖動。
按下鍵,電容放電,晶元復位。
松開按鍵,電容兩端的電壓會呈指數規律上升,與電阻電容都有關系。
充電到門限電壓時,復位信號消失。這個時間就是復位脈沖的寬度。
Ⅶ 如何選擇單片機的復位電路
1、上電復位不是很可靠,而且一旦程序跑飛就沒救了,除非斷電。比較適合有回看門狗的答單片機。對於成熟產品,從降低成本角度,可以使用上電復位。
另外,作為產品,最好使用上電復位。因為使用者通常沒有專業知識,就知道斷電通電,對他們來說,按鍵復位成了擺設。
2、按鍵復位比較適合樣品製作或者實驗室調試場合。
上電成本也低一些。
Ⅷ 51單片機「上電/按鍵復位電路」的按鍵復位原理和其中電容C的作用
開機時,電容器是空的,上電後就對電容充電。
充電電流,在電阻上版形成正電壓,使得RST為高電平,權單片機處於復位狀態。
充電電流逐漸減弱,電阻上電壓逐漸接近於0,RST降為低電平,單片機即開始正常工作。
手動按下SW,對電容放電,電容器裡面又空了。
手鬆開後,電源又對電容充電,再次出現開機時的現象。
Ⅸ STM32的復位電路問題
R1 = 10K 。
NRST 是低電平有效,上電復位時晶元必須有足夠的時間進行初始化操作,在此期間 NRST 必須保持低電平。
復位電路利用電容電壓不會突變的性質,開機後電容電壓為零,晶元復位,隨即電源通過 R1 向 C5 充電,直至電容電壓上升為高電平,晶元開始正常工作。
Ⅹ 單片機復位電路原理分析
復位電路的目的就是在上電的瞬間提供一個與正常工作狀態下相反的電平。一般利用電容電壓不能突變的原理,將電容與電阻串聯,上電時刻,電容沒有充電,兩端電壓為零,此時,提供復位脈沖,電源不斷的給電容充電,直至電容兩端電壓為電源電壓,電路進入正常工作狀態。