導航:首頁 > 電器電路 > w復位電路

w復位電路

發布時間:2021-10-11 17:50:50

① 單片機的按鍵啟動和復位電路

單片機的復位有上電復位和按鈕手動復位兩種。如圖(a)所示為上電復位電迴路,圖(答b)所示為上電按鍵復位電路。

上電復位是利用電容充電來實現的,即上電瞬間RST端的電位與VCC相同,隨著充電電流的減少,RST的電位逐漸下降。圖(a)中的R是施密特觸發器輸入端的一個10KΩ下拉電阻,時間常數為10×10-6×10×103=100ms。只要VCC的上升時間不超過1ms,振盪器建立時間不超過10ms,這個時間常數足以保證完成復位操作。上電復位所需的最短時間是振盪周期建立時間加上2個機器周期時間,在這個時間內RST的電平應維持高於施密特觸發器的下閾值。

上電按鍵復位(b)所示。當按下復位按鍵時,RST端產生高電平,使單片機復位。復位後,其片內各寄存器狀態改變,片內RAM內容不變。

由於單片機內部的各個功能部件均受特殊功能寄存器控制,程序運行直接受程序計數器PC指揮。各寄存器復位時的狀態決定了單片機內有關功能部件的初始狀態。

另外,在復位有效期間(即高電平),80C51單片機的ALE引腳和引腳均為高電平,且內部RAM不受復位的影響。

圖要點一下查看大圖才清楚哦O(∩_∩)O

② 復位電路的復位是什麼意思

復位就是歸位,原來在哪就回那去,一般也叫初始化。

相當大家集合了為開始,然版後都去干自己的去權了,老師喊集合了,大家都回到自己位置了,喊集合就是復位。

操作原理與計算器有著異曲同工之妙,只是啟動原理和手段有所不同。復位電路,就是利用它把電路恢復到起始狀態。就像計算器的清零按鈕的作用一樣,以便回到原始狀態,重新進行計算。



(2)w復位電路擴展閱讀:

和計算器清零按鈕有所不同的是,復位電路啟動的手段有所不同。

一是在給電路通電時馬上進行復位操作。

二是在必要時可以由手動操作。

三是根據程序或者電路運行的需要自動地進行。

復位電路都是比較簡單的大都是只有電阻和電容組合就可以辦到了,再復雜點就有三極體等配合程序來進行了。

③ 復位電路原理圖

(1)復位電路之一。所示是微控制器中的一種實用復位電路。電路中,A105是機芯微控制器集成電路,A101是主軸伺服控制和數字信號處理集成電路, A104是伺服控制集成電路。

微控制器實用復位電路之一

這一電路的工作原理是這樣:在電源接通後,+5 V直流電壓通過電阻R216和電容C128加到集成電路A105的復位信號輸入引腳⑨腳,開機瞬間由於電容C128兩端的電壓不能突變,所以A105的⑨腳上是高電平,隨著+5 V直流電壓對C128充電的進行,⑨腳的電壓下降。

由此可見,加到集成電路A105的復位引腳⑨腳上的復位觸發信號是一個正脈沖。這一正脈沖復位信號經集成電路⑨腳內電路反相處理,使內電路完成復位。

重要提示
這一復位電路在使集成電路A105復位的同時,A1的⑥腳還輸出一個低電平復位脈沖信號,分別加到集成電路A101的復位信號輸入端16腳和集成電路A104的復位信號輸入端①腳,使A101和A104兩個集成電路同時復位。

(2)復位電路之二。所示是微控制器中的另一種實用復位電路。電路中, A1是微控制器集成電路,其42腳是電源引腳,33腳是復位引腳。

這一電路的工作原理是這樣:在電源開關接通後,+5 V直流電壓給集成電路A1的電源引腳42腳供電,當電源開關剛接通時,+5 V 電壓還沒有上升到穩壓二極體VZ1 的擊穿電壓,所以VZ1處於截止狀態,此時VT1管截止,這樣+5 V電源電壓經電阻R3加到VT2管的基極,使VT2管飽和導通,其集電極為低電平,即使集成電路A1的復位引腳33腳為低電平。

實用復位電路之二

隨著 +5 V 電壓升到穩定的 +5 V 後,這一電壓使穩壓二極體VZ1擊穿,導通的VZ1和R1給VT1管的基極加上足夠的直流偏置電壓,使VT1飽和導通,其集電極為低電平,這一低電平加到VT2管的基極,使VT2 管處於截止狀態,這樣+5 V 電壓經電阻R4加到復位引腳33腳上,使33腳為高電平。

通過上述分析可知,在電源開關接通後,復位引腳33腳上的穩定直流電壓的建立滯後一段時間,這就是復位信號,使集成電路A1的內電路復位。

斷電後,電容C1充到的電荷通過二極體VD1放掉,因為在電容C1上的電壓為上正下負,+5 V 端相接於接地,C1 上的充電電壓加到VD1上的是正向偏置電壓,使VD1導通放電,將C1中的電荷放掉,以供下一次開機時能夠起到復位作用。

(3)復位電路之三。所示是微控制器中的另一種實用復位電路。電路中, A1是微控制器集成電路,其41腳是電源引腳, 24腳是復位引腳,VZ002是穩壓二極體,VT002是PNP型三極體。

④ 單片機復位電路(高低電平復位分別)

當單片機上電瞬間由於電容電壓不能突變會使電容兩邊的電位相同,此時為低電平,之後隨著時間推移電源通過電阻對電容充電,充滿電時RST為高電平。正常工作為高電平,低電平復位。

當單片機上電瞬間由於電容電壓不能突變會使電容兩邊的電位相同,此時RST為高電平,之後隨著時間推移電源負極通過電阻對電容放電,放完電時RST為低電平。正常工作為低電平,高電平復位。

單片機的復位引腳RST(全稱RESET)出現2個機器周期以上的高電平時,單片機就執行復位操作。如果RST持續為高電平,單片機就處於循環復位狀態。當單片機處於低電平時就掃描程序存儲器執行程序。

(4)w復位電路擴展閱讀

基本結構

1、運算器

運算器由運算部件——算術邏輯單元(Arithmetic & Logical Unit,簡稱ALU)、累加器和寄存器等幾部分組成。ALU的作用是把傳來的數據進行算術或邏輯運算,輸入來源為兩個8位數據,分別來自累加器和數據寄存器。

2、ALU能完成對這兩個數據進行加、減、與、或、比較大小等操作,最後將結果存入累加器。例如,兩個數6和7相加,在相加之前,操作數6放在累加器中,7放在數據寄存器中,當執行加法指令時,ALU即把兩個數相加並把結果13存入累加器,取代累加器原來的內容6。

3、運算器有兩個功能:

(1)執行各種算術運算。

(2)執行各種邏輯運算,並進行邏輯測試,如零值測試或兩個值的比較。

(3)運算器所執行全部操作都是由控制器發出的控制信號來指揮的,並且,一個算術操作產生一個運算結果,一個邏輯操作產生一個判決。

4、控制器

控制器由程序計數器、指令寄存器、指令解碼器、時序發生器和操作控制器等組成,是發布命令的「決策機構」,即協調和指揮整個微機系統的操作。其主要功能有:

(1) 從內存中取出一條指令,並指出下一條指令在內存中的位置。

(2) 對指令進行解碼和測試,並產生相應的操作控制信號,以便於執行規定的動作。

(3) 指揮並控制CPU、內存和輸入輸出設備之間數據流動的方向。

5、主要寄存器

(1)累加器A

累加器A是微處理器中使用最頻繁的寄存器。在算術和邏輯運算時它有雙功能:運算前,用於保存一個操作數;運算後,用於保存所得的和、差或邏輯運算結果。

(2)數據寄存器DR

數據寄存器通過數據匯流排向存儲器和輸入/輸出設備送(寫)或取(讀)數據的暫存單元。它可以保存一條正在解碼的指令,也可以保存正在送往存儲器中存儲的一個數據位元組等等。

(3)程序計數器PC

PC用於確定下一條指令的地址,以保證程序能夠連續地執行下去,因此通常又被稱為指令地址計數器。在程序開始執行前必須將程序的第一條指令的內存單元地址(即程序的首地址)送入PC,使它總是指向下一條要執行指令的地址。

(4)地址寄存器AR

地址寄存器用於保存當前CPU所要訪問的內存單元或I/O設備的地址。由於內存與CPU之間存在著速度上的差異,所以必須使用地址寄存器來保持地址信息,直到內存讀/寫操作完成為止。

硬體特性

晶元

1、主流單片機包括CPU、4KB容量的RAM、128 KB容量的ROM、 2個16位定時/計數器、4個8位並行口、全雙工串口行口、ADC/DAC、SPI、I2C、ISP、IAP。

2、系統結構簡單,使用方便,實現模塊化。

3、單片機可靠性高,可工作到10^6 ~10^7小時無故障。

4、處理功能強,速度快。

5、低電壓,低功耗,便於生產攜帶型產品。

6、控制功能強。

7、環境適應能力強。

⑤ cpu復位電路工作原理

復位的原理,一般是指在復位引腳上RST上,持續一段時間的高電平或者低電平,會使系統進回入初始答化的狀態。
復位,從實現方式上,可以分為上電復位、手動復位、軟體復位等;
上電復位--系統上電時會發生;
手動復位--根據用戶需要,手動觸發復位;
軟體復位--根據需要,通過軟體可以復位
復位電路,是指復位的電路實現,實現復位引腳上的高低電平(要保持一段時間)。
RC電路,通過1個電阻和1電容可以實現復位;
按鍵復位,通過按鍵按下時接通高低電平來實現復位;
專用的復位晶元,為了增加可靠性,可以採用專門的復位晶元來實現。

⑥ 如何理解復位電路

所謂復位電路就是當該電路被觸發時,單片機或其他器件會檢測到該狀態,從而讓單片機自動重新啟動,所有程序全部重新開跑。

⑦ 電腦主板復位電路

1、手動按鈕復位

手動按鈕復位需要人為在復位輸入端RST上加入高電平(圖1)。一般採用的辦法是在RST端和正電源Vcc之間接一個按鈕。當人為按下按鈕時,則Vcc的+5V電平就會直接加到RST端。手動按鈕復位的電路如所示。由於人的動作再快也會使按鈕保持接通達數十毫秒,所以,完全能夠滿足復位的時間要求。

2、上電復位

AT89C51的上電復位電路,只要在RST復位輸入引腳上接一電容至Vcc端,下接一個電阻到地即可。對於CMOS型單片機,由於在RST端內部有一個下拉電阻,故可將外部電阻去掉,而將外接電容減至1uF。上電復位的工作過程是在加電時,復位電路通過電 容加給RST端一個短暫的高電平信號,此高電平信號隨著Vcc對電容的充電過程而逐漸回落,即RST端的高電平持續時間取決於電容的充電時間。為了保證系統能夠可靠地復位,RST端的高電平信號必須維持足夠長的時間。上電時,Vcc的上升時間約為10ms,而振盪器的起振時間取決於振盪頻率,如晶振頻率為10MHz,起振時間為1ms;晶振頻率為1MHz,起振時間則為10ms。復位電路中,當Vcc掉電時,必然會使RST端電壓迅速下降到0V以下,但是,由於內部電路的限製作用,這個負電壓將不會對器件產生損害。另外,在復位期間,埠引腳處於隨機狀態,復位後,系統將埠置為全「l」態。如果系統在上電時得不到有效的復位,則程序計數器PC將得不到一個合適的初值,因此,CPU可能會從一個未被定義的位置開始執行程序。

3、積分型上電復位

常用的上電或開關復位電路如圖3所示。上電後,由於電容C3的充電和反相門的作用,使RST持續一段時間的高電平。當單片機已在運行當中時,按下復位鍵K後松開,也能使RST為一段時間的高電平,從而實現上電或開關復位的操作。

根據實際操作的經驗,下面給出這種復位電路的電容、電阻參考值。

C=1uF,Rl=lk,R2=10k

⑧ 單片機的復位電路是怎樣工作的

它的工作原理:電容在上接高電平,電阻在下接地,中間為RST。這種復位電路的工作回原理答是:通電時,電容兩端相當於是短路,於是RST引腳上為高電平,然後電源通過電阻對電容充電,RST端電壓慢慢下降,降到一定程序,即為低電平,單片機開始正常工作。
復位方法一般有上電自動復位和外部按鍵手動復位,上電復位:上電瞬間,電容充電電流最大,電容相當於短路,RST端為高電平,自動復位;電容兩端的電壓達到電源電壓時,電容充電電流為零,電容相當於開路,RST端為低電平,程序正常運行。手動復位:首先經過上電復位,當按下按鍵時,RST直接與VCC相連,為高電平形成復位,同時電解電容被短路放電;按鍵松開時,VCC對電容充電,充電電流在電阻上,RST依然為高電平,仍然是復位,充電完成後,電容相當於開路,RST為低電平,正常工作。

⑨ 什麼是復位電路,它在電路中起到什麼作用

復位電路是一種用來使電路恢復到起始狀態的電路設備,它的操作原理與計算器有著異曲同工之妙,只是啟動原理和手段有所不同。復位電路,就是利用它把電路恢復到起始狀態。就像計算器的清零按鈕的作用一樣,以便回到原始狀態,重新進行計算。

復位電路的作用:在上電或復位過程中,控制CPU的復位狀態:這段時間內讓CPU保持復位狀態,而不是一上電或剛復位完畢就工作,防止CPU發出錯誤的指令、執行錯誤操作,也可以提高電磁兼容性能。

無論用戶使用哪種類型的單片機,總要涉及到單片機復位電路的設計。而單片機復位電路設計的好壞,直接影響到整個系統工作的可靠性。

(9)w復位電路擴展閱讀

1、上電復位
上電復位就是直接給產品上電,上電復位與低壓 LVR操作有聯系,電源上電的過程是逐漸上升的曲線過程,這個過程不是瞬間的完成的,一上電時候系統進行初始化,此時振盪器開始工作並提供系統時鍾,系統正常工作。

2、看門狗復位

看門狗定時器CPU內部系統,它是一個自振式的 RC振盪定時器,與外圍電路無關,也與CPU主時鍾無關,只要開啟看門狗功能也能保持計時,該溢出時候也會溢出,並產生復位。

3、LVR低壓復位
每個CPU都有一個復位電壓,這個電壓很低,有1.8V、2.5V等,當系統由於受到外界的影響導致輸入電壓過低,當低至復位電壓時候系統自動復位,當然,前提是系統要打開LVR功能,有時候也叫掉電復位。

當LVR<工作電壓<VDD時候,比如在V1時候工作是正常的,當VSS<工作電壓<LVR時候,系統有可能出錯,比如在V2時候,也就是我們常說的死區,這個狀態不確定。

閱讀全文

與w復位電路相關的資料

熱點內容
涵洞刷的瀝青防水叫什麼 瀏覽:690
台電平板保修 瀏覽:468
日本手機防水是什麼意思 瀏覽:922
鋰電池組電路 瀏覽:696
年底傢具銷售有什麼講究 瀏覽:318
防水乳液粘度怎麼辦 瀏覽:807
電視維修費用計入什麼科目 瀏覽:459
懷遠家電維修哪個好移機 瀏覽:159
布紋櫃子配什麼傢具 瀏覽:613
一階動態電路 瀏覽:769
自行車鏈條維修視頻 瀏覽:10
囍宅家居 瀏覽:608
自學電腦主板維修視頻講座 瀏覽:892
小米手環4通過什麼控制家電 瀏覽:344
修理家電的app有哪些 瀏覽:602
成都市手機維修點 瀏覽:779
商場買手機如何識別翻新機 瀏覽:930
永久自行車的維修點 瀏覽:244
傢具美容一般多少錢啊 瀏覽:904
應為停電導致家用電器燒壞怎麼處理 瀏覽:116