① 2在物理線路上傳輸比特流過程中造成傳輸差錯的主要原因是什麼差錯類型有哪兩種都有什麼特點
在物來理線路上傳輸過程源中出現差錯是不可避免的,由於在通信信道存在著噪音,因此數據信號通過通信信道到達信宿時,接收信號必然是數據信號與噪音信號電平的疊加,如果噪音對信號疊加的結果在電平判決時引起錯誤,就會產生差錯。
差錯的類型主要有兩類:1、隨機差錯,是由熱噪音引起的;2、突發差錯,是由沖擊噪音引起的。
② 燈電路接線到底出了什麼差錯,問題在哪
這是開關控制了零線所以出現B燈閃情況,把A零線搭到B上當然就由A開關控制了。解決方法把燈線回復,把開關控制了火線就好了。
③ 通信中常使用哪些差錯控制方式它們各有何特點
為什麼傳輸中會產生差錯?當數據從信源出發,經過通信信道時,由於通信信道總是有一定回的雜訊存在,因此答在到達信宿時,接收信號是信號與雜訊的疊加。在接收端,接收電路在取樣時判斷信號電平。如果雜訊對信號疊加的結果在電平判斷時出現錯誤,就會引起通信數據的錯誤。
原因是熱雜訊和沖擊雜訊
④ 差錯控制的基本工作方式有哪幾種各有什麼特點
號稱網路硬體三劍客的集線器(Hub)、交換機(Switch)與路由器(Router)一直都是網路界的活躍分子,但讓很多初入網路之門的菜鳥惱火的是,它們三者不僅外觀相似,而且經常呆在一起,要想分清誰是誰,感覺有點難!就讓我們一起來看看它們之間有什麼區別和聯系吧!
三劍客的工作原理
一、集線器
1.什麼是集線器
在認識集線器之前,必須先了解一下中繼器。在我們接觸到的網路中,最簡單的就是兩台電腦通過兩塊網卡構成「雙機互連」,兩塊網卡之間一般是由非屏蔽雙絞線來充當信號線的。由於雙絞線在傳輸信號時信號功率會逐漸衰減,當信號衰減到一定程度時將造成信號失真,因此在保證信號質量的前提下,雙絞線的最大傳輸距離為100米。當兩台電腦之間的距離超過100米時,為了實現雙機互連,人們便在這兩台電腦之間安裝一個「中繼器」,它的作用就是將已經衰減得不完整的信號經過整理,重新產生出完整的信號再繼續傳送。
中繼器就是普通集線器的前身,集線器實際就是一種多埠的中繼器。集線器一般有4、8、16、24、32等數量的RJ45介面,通過這些介面,集線器便能為相應數量的電腦完成「中繼」功能。由於它在網路中處於一種「中心」位置,因此集線器也叫做「Hub」。
2.集線器的工作原理
集線器的工作原理很簡單,以圖2為例,圖中是一個具備8個埠的集線器,共連接了8台電腦。集線器處於網路的「中心」,通過集線器對信號進行轉發,8台電腦之間可以互連互通。具體通信過程是這樣的:假如計算機1要將一條信息發送給計算機8,當計算機1的網卡將信息通過雙絞線送到集線器上時,集線器並不會直接將信息送給計算機8,它會將信息進行「廣播」--將信息同時發送給8個埠,當8個埠上的計算機接收到這條廣播信息時,會對信息進行檢查,如果發現該信息是發給自己的,則接收,否則不予理睬。由於該信息是計算機1發給計算機8的,因此最終計算機8會接收該信息,而其它7台電腦看完信息後,會因為信息不是自己的而不接收該信息。
3.集線器的特點
1)共享帶寬
集線器的帶寬是指它通信時能夠達到的最大速度。目前市面上用於中小型區域網的集線器主要有10Mbps、100Mbps和10/100Mbps自適應三種。
10Mb帶寬的集線器的傳輸速度最大為10Mbps,即使與它連接的計算機使用的是100Mbps網卡,在傳輸數據時速度仍然只有10Mbps。10/100Mbps自適應集線器能夠根據與埠相連的網卡速度自動調整帶寬,當與10Mbps的網卡相連時,其帶寬為10Mb;與100Mbps的網卡相連時,其帶寬為100Mb,因此這種集線器也叫做「雙速集線器」。
集線器是一種「共享」設備,集線器本身不能識別目的地址,當同一區域網內的A主機給B主機傳輸數據時,數據包在以集線器為架構的網路上是以廣播方式傳輸的,由每一台終端通過驗證數據包頭的地址信息來確定是否接收。
由於集線器在一個時鍾周期中只能傳輸一組信息,如果一台集線器連接的機器數目較多,並且多台機器經常需要同時通信時,將導致集線器的工作效率很差,如發生信息堵塞、碰撞等。
為什麼會這樣呢?打給比方,以圖2為例,當計算機1正在通過集線器發信息給計算機8時,如果此時計算機2也想通過集線器將信息發給計算機7,當它試圖與集線器聯系時,卻發現集線器正在忙計算機1的事情,於是計算機2便會「帶」著數據站在集線器的面前等待,並時時要求集線器停下計算機1的活來幫自己干。如果計算機2成功地將集線器「搶」過來了(由於集線器是「共享」的,因此很容易搶到手),此時正處於傳輸狀態的計算機1的數據便會停止,於是計算機1也會去「搶」集線器……
可見,集線器上每個埠的真實速度除了與集線器的帶寬有關外,與同時工作的設備數量也有關。比如說一個帶寬為10Mb的集線器上連接了8台計算機,當這8台計算機同時工作時,則每台計算機真正所擁有的帶寬是10/8=1.25Mb!
2半雙工
先說說全雙工:兩台設備在發送和接收數據時,通信雙方都能在同一時刻進行發送或接收操作,這樣的傳送方式就是全雙工。而處於半雙工傳送方式的設備,當其中一台設備在發送數據時,另一台只能接收,而不能同時將自己的數據發送出去。
由於集線器採取的是「廣播」傳輸信息的方式,因此集線器傳送數據時只能工作在半雙工狀態下,比如說計算機1與計算機8需要相互傳送一些數據,當計算機1在發送數據時,計算機8隻能接收計算機1發過來的數據,只有等計算機1停止發送並做好了接收准備,它才能將自己的信息發送給計算機1或其它計算機。
二、交換機
1.什麼是交換機
交換機也叫交換式集線器,它通過對信息進行重新生成,並經過內部處理後轉發至指定埠,具備自動定址能力和交換作用,由於交換機根據所傳遞信息包的目的地址,將每一信息包獨立地從源埠送至目的埠,避免了和其他埠發生碰撞。廣義的交換機就是一種在通信系統中完成信息交換功能的設備。
2.交換機的工作原理
在計算機網路系統中,交換機是針對共享工作模式的弱點而推出的。集線器是採用共享工作模式的代表,如果把集線器比作一個郵遞員,那麼這個郵遞員是個不認識字的「傻瓜」--要他去送信,他不知道直接根據信件上的地址將信件送給收信人,只會拿著信分發給所有的人,然後讓接收的人根據地址信息來判斷是不是自己的!而交換機則是一個「聰明」的郵遞員--交換機擁有一條高帶寬的背部匯流排和內部交換矩陣。交換機的所有的埠都掛接在這條背部匯流排上,當控制電路收到數據包以後,處理埠會查找內存中的地址對照表以確定目的MAC(網卡的硬體地址)的NIC(網卡)掛接在哪個埠上,通過內部交換矩陣迅速將數據包傳送到目的埠。目的MAC若不存在,交換機才廣播到所有的埠,接收埠回應後交換機會「學習」新的地址,並把它添加入內部地址表中。
可見,交換機在收到某個網卡發過來的「信件」時,會根據上面的地址信息,以及自己掌握的「常住居民戶口簿」快速將信件送到收信人的手中。萬一收信人的地址不在「戶口簿」上,交換機才會像集線器一樣將信分發給所有的人,然後從中找到收信人。而找到收信人之後,交換機會立刻將這個人的信息登記到「戶口簿」上,這樣以後再為該客戶服務時,就可以迅速將信件送達了。
3.交換機的性能特點
1)獨享帶寬
由於交換機能夠智能化地根據地址信息將數據快速送到目的地,因此它不會像集線器那樣在傳輸數據時「打擾」那些非收信人。這樣一來,交換機在同一時刻可進行多個埠組之間的數據傳輸。並且每個埠都可視為是獨立的網段,相互通信的雙方獨自享有全部的帶寬,無須同其他設備競爭使用。比如說,當A主機向D主機發送數據時,B主機可同時向C主機發送數據,而且這兩個傳輸都享有網路的全部帶寬--假設此時它們使用的是10Mb的交換機,那麼該交換機此時的總流通量就等於2×10Mb=20Mb。
2)全雙工
當交換機上的兩個埠在通信時,由於它們之間的通道是相對獨立的,因此它們可以實現全雙工通信。
三、集線器與交換機的區別
從兩者的工作原理來看,交換機和集線器是有很大差別的。首先,從OSI體系結構來看,集線器屬於OSI的第一層物理層設備,而交換機屬於OSI的第二層數據鏈路層設備。
其次,從工作方式來看,集線器採用一種「廣播」模式,因此很容易產生「廣播風暴」,當網路規模較大時性能會受到很大的影響。而當交換機工作的時候,只有發出請求的埠和目的埠之間相互響應而不影響其他埠,因此交換機能夠在一定程度上隔離沖突域和有效抑制「廣播風暴」的產生。
另外,從帶寬來看,集線器不管有多少個埠,所有埠都是共享一條帶寬,在同一時刻只能有兩個埠傳送數據,其他埠只能等待,同時集線器只能工作在半雙工模式下;而對於交換機而言,每個埠都有一條獨占的帶寬,當兩個埠工作時並不影響其他埠的工作,同時交換機不但可以工作在半雙工模式下而且可以工作在全雙工模式下。
如果用最簡單的語言敘述交換機與集線器的區別,那就應該是智能與非智能的區別。集線器說白了只是連接多個計算機的網路設備,它只能起到信號放大和傳輸的作用,不能對信號中的碎片進行處理,所以在傳輸過程中容易出錯。而交換機則可以看作為是一種智能型的集線器,它除了擁有集線器的所有特性外,還具有自動定址、交換、處理的功能。並且在數據傳遞過程中,發送端與接受端獨立工作,不與其它埠發生關系,從而達到防止數據丟失和提高吞吐量的目的。
⑤ 在OSI參考模型中,哪一層提供建立、維護和有序中斷虛電路,傳輸差錯校驗、恢復以及信息控制機制
傳輸層,具體請參考以下:
國際標准化組織(ISO,International Standard Organization)於1981年正式推薦了一個網路體系結構,稱為「開放系統互聯參考模型」(OSI/RM,Open System Interconnection/Reference Model)。這是一個7層的網路體系結構,由於這個標准模型的建立,使得各種計算機網路向它靠攏,大大推動了網路通信標准化的進程。
OSI參考模型的7層網路體系結構如圖1-6所示,從底層往上依次為物理層(PH)、數據鏈路層(DL)、網路層(N)、傳輸層(T)、對話層(S)、表示層(P)和應用層(A)。其中物理層、數據鏈路層和網路層通常被稱為媒體層,屬於計算機網路中的通信子網,主要用於創建兩個網路設備間的物理連接,是計算機網路工程師研究的對象;傳輸層、會話層、表示層和應用層則被稱為主機層,屬於計算機網路中的資源子網,主要負責互操作性,是網路用戶所面對的內容。
OSI參考模型各層的功能如下。
1.物理層
物理層處於體系結構的第1層,即最底層,向下直接與物理傳輸介質相連接。物理層協議是各種網路設備進行互聯時必須遵守的底層協議,與其他協議無關。物理層定義了數據通信網路之間物理鏈路的電氣或機械特性,以及激活、維護和關閉這條鏈路的各項操作。物理層的特徵參數包括電壓、數據傳輸率、最大傳輸距離和物理連接介質等。
2.數據鏈路層
數據鏈路層位於體系結構的第2層,介於物理層與網路層之間。設立數據鏈路層的主要目的是將一條原始且有差錯的物理鏈路變為對網路層無差錯的數據鏈路。它把從物理層來的原始數據組成幀即用於傳送數據的結構化的包。數據鏈路層負責幀在計算機之間的無差錯傳遞。其特徵參數包括物理地址、網路拓撲結構、錯誤警告機制、所傳數據幀的排序和流量控制等。數據鏈路層對等節點間的通信一般要經過數據鏈路建立、數據傳輸與數據鏈路釋放三個階段,因此數據鏈路連接與物理連接是有區別的。數據鏈路連接建立在物理連接之上,一個物理連接生存期間允許有多個數據鏈路生存期。數據鏈接釋放時,物理連接不一定釋放。
3.網路層
網路層在體系結構的第3層,介於數據鏈路層與傳輸層之間,定義網路操作系統通信用的協議,為傳送的信息確定地址,將邏輯地址和名字翻譯成物理地址。同時負責確定從源計算機沿著網路到目的計算機的路由選擇,處理交通問題,如交換、路由和數據包阻塞的控制等,路由器的功能在這一層實現。網路層的主要功能是將報文分組以最佳路徑通過通信子網送達目的主機,這樣網路用戶就不需要關心網路的拓撲結構及所使用的通信介質。網路層還提供面向連接的虛電路服務和非連接的數據報服務,虛電路服務可以保證報文分組無差錯、不丟失、不重復和順序傳輸。
4.傳輸層
傳輸層是體系結構的第4層,位於網路層與會話層之間,負責端到端的信息傳輸錯誤處理,包括錯誤的確認和恢復,確保信息的可靠傳遞。在必要時,也對信息重新打包,把過長信息分成小包發送。在接收端,再將這些小包重構成初始的信息。在這一層中最常用的協議就是TCP/IP中的傳輸控制協議(TCP)、Novell中的順序包交換協議(SPX),以及 Microsoft NetBIOS/NetBEUI協議。傳輸層主要對上層提供透明(不依賴於具體網路)的可靠的數據傳輸。在OSI參考模型中,人們經常將7層分為高層和低層。如果從面向通信和面向信息處理角度進行分類,傳輸層一般劃在低層;如果從用戶功能與網路功能角度進行分類,傳輸層又被劃在高層。這種差異正好反映出傳輸層在OSI參考模型中承上啟下的特殊地位和作用。
5.會話層
會話層在OSI體系結構的第5層,處於傳輸層和表示層之間,允許在不同計算機上的兩個應用間建立、使用和結束會話,實現對話控制,管理何端發送、何時發送和佔用多長時間等。會話層利用傳輸層提供的可靠信息傳遞服務,使得兩個會話實體之間不用考慮相互間的距離、使用何種網路通信等細節,進行數據的透明傳輸。從OSI參考模型看,會話層之上各層是面向用戶的,會話層以下各層是面向網路通信的。會話層在兩者之間起到連接的作用,其主要功能是向會話的應用進程之間提供會話組織和同步服務。
6.表示層
OSI體系結構的第6層是表示層,在會話層與應用層之間。表示層則要保證所傳輸的數據經傳送後意義不改變,它要解決的問題是如何描述數據結構並使之與機器無關。該層定義了一系列代碼和代碼轉換功能,包含處理網路應用程序數據格式的協議,以保證源端計算機發送的數據在目的端計算機同樣能夠被識別。表示層從應用層獲得數據,將其排序成一個有含義的格式提供給會話層。這一層還通過提供數據加密服務解決安全問題,通過提供壓縮數據服務盡量減少網路上需要傳送的數據量。表示層提供兩類服務:相互通信的應用進程間交換信息的表示方法服務與表示連接服務。
7.應用層
應用層位於第7層,是體系結構的頂層,主要功能是直接為用戶服務,通過應用軟體實現網路與用戶的直接對話。這一層是最終用戶應用程序訪問網路服務的地方,負責整個網路應用程序協同工作。
⑥ 什麼叫「電路連接無誤」
「電路連接無誤」,電路連接沒有任何錯誤
⑦ 在物理線路上傳輸比特流過程中出現差錯的主要原因是什麼
選A吧。
傳輸有效性自然指的是數據的傳輸是否有效。
在物理層傳輸比特流由回於介質不同等原因,會存答在差錯。數據鏈路層則可以通過冗餘效驗來檢測錯誤幀。對於錯誤的幀按照功能有些是需要重傳的。
D選項是傳輸速率,指的是吞吐量。這和帶寬有關系。數據傳輸的有效性並不影響吞吐量。即使需要大量重傳,吞吐量還是基本固定的一個值。它包含了重傳的數據。
⑧ 為什麼在傳輸中會產生差錯差錯控制方法有哪些
為什麼傳輸中會產抄生差錯襲?當數據從信源出發,經過通信信道時,由於通信信道總是有一定的雜訊存在,因此在到達信宿時,接收信號是信號與雜訊的疊加。在接收端,接收電路在取樣時判斷信號電平。如果雜訊對信號疊加的結果在電平判斷時出現錯誤,就會引起通信數據的錯誤。
原因是熱雜訊和沖擊雜訊
⑨ 畫軟性PCB與剛性PCB區別
隨著軟性PCB產量比的不斷增加及剛撓性PCB的應用與推廣,現在比較常見在說PCB時加上軟性、剛性或剛撓性再說它是幾層的PCB。通常,用軟性絕緣基材製成的PCB稱為軟性PCB或撓性PCB,剛撓復合型的PCB稱剛撓性PCB。它適應了當今電子產品向高密度及高可靠性、小型化、輕量化方向發展的需要,還滿足了嚴格的經濟要求及市場與技術競爭的需要。
在國外,軟性PCB在六十年代初已廣泛使用。我國,則在六十年代中才開始生產應用。近年來,隨著全球經濟一體化與開放市嘗引進技術的促進其使用量不斷地在增長,有些中小型剛性PCB廠瞄準這一機會採用軟性硬做工藝,利用現有設備對工裝工具及工藝進行改良,轉型生產軟性PCB與適應軟性PCB用量不斷增長的需要。為進一步認識PCB,這里對軟性PCB工藝作一探討性介紹。
一、軟性PCB分類及其優缺點
1.軟性PCB分類
軟性PCB通常根據導體的層數和結構進行如下分類:
1.1單面軟性PCB
單面軟性PCB,只有一層導體,表面可以有覆蓋層或沒有覆蓋層。所用的絕緣基底材料,隨產品的應用的不同而不同。一般常用的絕緣材料有聚酯、聚醯亞胺、聚四氟乙烯、軟性環氧-玻璃布等。
單面軟性PCB又可進一步分為如下四類:
1)無覆蓋層單面連接的
這類軟性PCB的導線圖形在絕緣基材上,導線表面無覆蓋層。像通常的單面剛性PCB一樣。這類產品是最廉價的一種,通常用在非要害且有環境保護的應用場合。其互連是用錫焊、熔焊或壓焊來實現。它常用在早期的電話機中。
2)有覆蓋層單面連接的
這類和前類相比,只是根據客戶要求在導線表面多了一層覆蓋層。覆蓋時需把焊盤露出來,簡單的可在端部區域不覆蓋。要求精密的則可採用余隙孔形式。它是單面軟性PCB中應用最多、最廣泛的一種,在汽車儀表、電子儀器中廣泛使用。
3)無覆蓋層雙面連接的
這類的連接盤介面在導線的正面和背面均可連接。為了做到這一點,在焊盤處的絕緣基材上開一個通路孔,這個通路孔可在絕緣基材的所需位置上先沖制、蝕刻或其它機械方法製成。它用於兩面安裝元、器件和需要錫焊的場合,通路處焊盤區無絕緣基材,此類焊盤區通常用化學方法去除。
4)有覆蓋層雙面連接的
這類與前類不同處是表面有一層覆蓋層。但覆蓋層有通路孔,也允許其兩面都能端接,且仍保持覆蓋層。這類軟性PCB是由兩層絕緣材料和一層金屬導體製成。被用在需要覆蓋層與周圍裝置相互絕緣,並自身又要相互絕緣,末端又需要正、反面都連接的場合。
1.2雙面軟性PCB
雙面軟性PCB,有兩層導體。這類雙面軟性PCB的應用和優點與單面軟性PCB相同,其主要優點是增加了單位面積的布線密度。它可按有、無金屬化孔和有、無覆蓋層分為:a無金屬化孔、無覆蓋層的;b無金屬化孔、有覆蓋層的;c有金屬化孔、無覆蓋層的;d有金屬化孔、有覆蓋層的。無覆蓋層的雙面軟性PCB較少應用。
1.3多層軟性PCB
軟性多層PCB如剛性多層PCB那樣,採用多層層壓技術,可製成多層軟性PCB。最簡單的多層軟性PCB是在單面PCB兩面覆有兩層銅屏蔽層而形成的三層軟性PCB。這種三層軟性PCB在電特性上相當於同軸導線或屏蔽導線。最常用的多層軟性PCB結構是四層結構,用金屬化孔實現層間互連,中間二層一般是電源層和接地層。
多層軟性PCB的優點是基材薄膜重量輕並有優良的電氣特性,如低的介電常數。用聚醯亞胺薄膜為基材製成的多層軟性PCB板,比剛性環氧玻璃布多層PCB板的重量約輕1/3,但它失去了單面、雙面軟性PCB優良的可撓性,大多數此類產品是不要求可撓性的。
多層軟性PCB可進一步分成如下類型:
1)撓性絕緣基材上構成多層PCB,其成品規定為可以撓曲:這種結構通常是把許多單面或雙面微帶可撓性PCB的兩面端粘結在一起,但其中心部分並末粘結在一起,從而具有高度可撓性。為了具有所希望的電氣特性,如特性阻抗性能和它所互連的剛性PCB相匹配,多層軟性PCB部件的每個線路層,必須在接地面上設計信號線。為了具有高度的可撓性,導線層上可用一層薄的、適合的塗層,如聚醯亞胺,代替一層較厚的層壓覆蓋層。金屬化孔使可撓性線路層之間的z面實現所需的互連。這種多層軟性PCB最適合用於要求可撓性、高可靠性和高密度的設計中。
2)在軟性絕緣基材上構成多層PCB,其成品末規定可以撓曲:這類多層軟性PCB是用軟性絕緣材料,如聚醯亞胺薄膜,層壓製成多層板。在層壓後失去了固有的可撓性。當設計要求最大限度地利用薄膜的絕緣特性,如低的介電常數、厚度均勻介質、較輕的重量和能連續加工等特性時,就採用這類軟性PCB。例如,用聚醯亞胺薄膜絕緣材料製造的多層PCB比環氧玻璃布剛性PCB的重量大約輕三分之一。
3)在軟性絕緣基材上構成多層PCB,其成品必須可以成形,而不是可連續撓曲的:這類多層軟性PCB是由軟性絕緣材料製成的。雖然它用軟性材料製造,但因受電氣設計的限制,如為了所需的導體電阻,要求用厚的導體,或為了所需的阻抗或電容,要求在信號層和接地層之間有厚的絕緣隔離,因此,在成品應用時它已成形。術語「可成型的」定義為:多層軟性PCB部件具有做成所要求的形狀的能力,並在應用中不能再撓曲。在航空電子設備單元內部布線中應用。這時,要求帶狀線或三維空間設計的導體電阻低、電容耦合或電路雜訊極小以及在互連端部能平滑地彎曲成90°。用聚醯亞胺薄膜材料製成的多層軟性PCB實現了這種布線任務。因為聚醯亞胺薄膜耐高溫、有可撓性、而且總的電氣和機械特性良好。為了實現這個部件截面的所有互連,其中走線部分進一步可分成多個多層撓性線路部件,並用膠粘帶合在一起,形成一條印製電路束。
1.4剛性-軟性多層PCB
該類型通常是在一塊或二塊剛性PCB上,包含有構成整體所必不可少的軟性PCB。軟性PCB層被層壓在剛性多層PCB內,這是為了具有特殊電氣要求或為了要延伸到剛性電路外面,以朝代Z平面電路裝連能力。這類產品在那些把壓縮重量和體積作為關鍵,且要保證高可靠性、高密度組裝和優良電氣特性的電子設備中得到了廣泛的應用。
剛性-軟性多層PCB也可把許多單面或雙面軟性PCB的末端粘合壓制在一起成為剛性部分,而中間不粘合成為軟性部分,剛性部分的Z面用金屬化孔互連。可把可撓性線路層壓到剛性多層板內。這類PCB越來越多地用在那些要求超高封裝密度、優良電氣特性、高可靠性和嚴格限制體積的場合。
已經有一系列的混合多層軟性PCB部件設計用於軍用航空電子設備中,在這些應用場合,重量和體積是至關重要的。為了符合規定的重量和體積限度,內部封裝密度必須極高。除了電路密度高以外,為了使串擾和雜訊最小,所有信號傳輸線必須屏蔽。若要使用屏蔽的分離導線,則實際上不可能經濟地封裝到系統中。這樣,就使用了混合的多層
軟性PCB來實現其互連。這種部件將屏蔽的信號線包含在扁平帶狀線軟性PCB中,而後者又是剛性PCB的一個必要組成部分。在比較高水平的操作場合,製造完成後,PCB形成一個90°的S形彎曲,從而提供了z平面互連的途徑,並且在x、y和z平面振動應力作用下,可在錫焊點上消除應力-應變。
2.優點
2.1可撓性
應用軟性PCB的一個顯著優點是它能更方便地在三維空間走線和裝連,也可捲曲或折疊起來使用。只要在容許的曲率半徑范圍內捲曲,可經受幾千至幾萬次使用而不至損壞。
2.2減小體積
在組件裝連中,同使用導線纜比,軟性PCB的導體截面薄而扁平,減少了導線尺寸,並可沿著機殼成形,使設備的結構更加緊湊、合理,減小了裝連體積。與剛性PCB比,空間可節省60~90%。
2.3減輕重量
在同樣體積內,軟性PCB與導線電纜比,在相同載流量下,其重量可減輕約70%,與剛性PCB比,重量減輕約90%。
2.4裝連的一致性
用軟性PCB裝連,消除了用導線電纜接線時的差錯。只要加工圖紙經過校對通過後,所有以後生產出來的繞性電路都是相同。裝連接線時不會發生錯接。
2.5增加了可靠性
當採用軟性PCB裝連時,由於可在X、Y、Z三個平面上布線,減少了轉接互連,使整系統的可靠性增加,且對故障的檢查,提供了方便。
2.6電氣參數設計可控性
根據使用要求,設計師在進行軟性PCB設計時,可控制電容、電感、特性阻抗、延遲和衰減等。能設計成具有傳輸線的特性。因為這些參數與導線寬度、厚度、間距、絕緣層厚度、介電常數、損耗角正切等有關,這在採用導線電纜時是難於辦到的。
2.7末端可整體錫焊
軟性PCB象剛性PCB一樣,具有終端焊盤,可消除導線的剝頭和搪錫,從而節約了成本。終端焊盤與元、器件、插頭連接,可用浸焊或波峰焊來代替每根導線的手工錫焊。
2.8材料使用可選擇
軟性PCB可根據不同的使用要求,選用不同的基底材料來製造。例如,在要求成本低的裝連應用中,可使用聚酯薄膜。在要求高的應用中,需要具有優良的性能,可使用聚醯亞薄膜。
2.9低成本
用軟性PCB裝連,能使總的成本有所降低。這是因為:
1)由於軟性PCB的導線各種參數的一致性;實行整體端接,消除了電纜導線裝連時經常發生的錯誤和返工,且軟性PCB的更換比較方便。
2)軟性PCB的應用使結構設計簡化,它可直接粘附到構件上,減少線夾和其固定件。
3)對於需要有屏蔽的導線,用軟性PCB價格較低。
2.10加工的連續性
由於軟性覆箔板可連續成卷狀供應,因此可實現軟性PCB的連續生產。這也有利於降低成本。
3.缺點
3.1一次性初始成本高
由於軟性PCB是為特殊應用而設計、製造的,所以開始的電路設計、布線和照相底版所需的費用較高。除非有特殊需要應用軟性PCB外,通常少量應用時,最好不採用。
3.2軟性PCB的更改和修補比較困難
軟性PCB一旦製成後,要更改必須從底圖或編制的光繪程序開始,因此不易更改。其表面覆蓋一層保護膜,修補前要去除,修補後又要復原,這是比較困難的工作。
3.3尺寸受限制
軟性PCB在尚不普的情況下,通常用間歇法工藝製造,因此受到生產設備尺寸的限制,不能做得很長,很寬。
3.4操作不當易損壞
裝連人員操作不當易引起軟性電路的損壞,其錫焊和返工需要經過訓練的人員操作。
PCB高速PCB技術 -> PCB板的實現過程 -> Go to message
大家都知道理做PCB板就是把設計好的原理圖變成一塊實實在在的PCB電路板,請別小看這一過程,有很多原理上行得通的東西在工程中卻難以實現,或是別人能實現的東西另一些人卻實現不了,因此說做一塊PCB板不難,但要做好一塊PCB板卻不是一件容易的事情。
微電子領域的兩大難點在於高頻信號和微弱信號的處理,在這方面PCB製作水平就顯得尤其重要,同樣的原理設計,同樣的元器件,不同的人製作出來的PCB就具有不同的結果,那麼如何才能做出一塊好的PCB板呢?根據我們以往的經驗,想就以下幾方面談談自己的看法:
一:要明確設計目標
接受到一個設計任務,首先要明確其設計目標,是普通的PCB板、高頻PCB板、小信號處理PCB板還是既有高頻率又有小信號處理的PCB板,如果是普通的PCB板,只要做到布局布線合理整齊,機械尺寸准確無誤即可,如有中負載線和長線,就要採用一定的手段進行處理,減輕負載,長線要加強驅動,重點是防止長線反射。 當板上有超過40MHz的信號線時,就要對這些信號線進行特殊的考慮,比如線間串擾等問題。如果頻率更高一些,對布線的長度就有更嚴格的限制,根據分布參數的網路理論,高速電路與其連線間的相互作用是決定性因素,在系統設計時不能忽略。隨著門傳輸速度的提高,在信號線上的反對將會相應增加,相鄰信號線間的串擾將成正比地增加,通常高速電路的功耗和熱耗散也都很大,在做高速PCB時應引起足夠的重視。
當板上有毫伏級甚至微伏級的微弱信號時,對這些信號線就需要特別的關照,小信號由於太微弱,非常容易受到其它強信號的干擾,屏蔽措施常常是必要的,否則將大大降低信噪比。以致於有用信號被雜訊淹沒,不能有效地提取出來。
對板子的調測也要在設計階段加以考慮,測試點的物理位置,測試點的隔離等因素不可忽略,因為有些小信號和高頻信號是不能直接把探頭加上去進行測量的。
此外還要考慮其他一些相關因素,如板子層數,採用元器件的封裝外形,板子的機械強度等。在做PCB板子前,要做出對該設計的設計目標心中有數。
二。了解所用元器件的功能對布局布線的要求
我們知道,有些特殊元器件在布局布線時有特殊的要求,比如LOTI和APH所用的模擬信號放大器,模擬信號放大器對電源要求要平穩、紋波小。模擬小信號部分要盡量遠離功率器件。在OTI板上,小信號放大部分還專門加有屏蔽罩,把雜散的電磁干擾給屏蔽掉。NTOI板上用的GLINK晶元採用的是ECL工藝,功耗大發熱厲害,對散熱問題必須在布局時就必須進行特殊考慮,若採用自然散熱,就要把GLINK晶元放在空氣流通比較順暢的地方,而且散出來的熱量還不能對其它晶元構成大的影響。如果板子上裝有喇叭或其他大功率的器件,有可能對電源造成嚴重的污染這一點也應引起足夠的重視.
三. 元器件布局的考慮
元器件的布局首先要考慮的一個因素就是電性能,把連線關系密切的元器件盡量放在一起,尤其對一些高速線,布局時就要使它盡可能地短,功率信號和小信號器件要分開。在滿足電路性能的前提下,還要考慮元器件擺放整齊、美觀,便於測試,板子的機械尺寸,插座的位置等也需認真考慮。
高速系統中的接地和互連線上的傳輸延遲時間也是在系統設計時首先要考慮的因素。信號線上的傳輸時間對總的系統速度影響很大,特別是對高速的ECL電路,雖然集成電路塊本身速度很高,但由於在底板上用普通的互連線(每30cm線長約有2ns的延遲量)帶來延遲時間的增加,可使系統速度大為降低.象移位寄存器,同步計數器這種同步工作部件最好放在同一塊插件板上,因為到不同插件板上的時鍾信號的傳輸延遲時間不相等,可能使移位寄存器產主錯誤,若不能放在一塊板上,則在同步是關鍵的地方,從公共時鍾源連到各插件板的時鍾線的長度必須相等。
四,對布線的考慮
隨著OTNI和星形光纖網的設計完成,以後會有更多的100MHz以上的具有高速信號線的板子需要設計,這里將介紹高速線的一些基本概念。
1.傳輸線
印製電路板上的任何一條「長」的信號通路都可以視為一種傳輸線。如果該線的傳輸延遲時間比信號上升時間短得多,那麼信號上升期間所產主的反射都將被淹沒。不再呈現過沖、反沖和振鈴,對現時大多數的MOS電路來說,由於上升時間對線傳輸延遲時間之比大得多,所以走線可長以米計而無信號失真。而對於速度較快的邏輯電路,特別是超高速ECL
集成電路來說,由於邊沿速度的增快,若無其它措施,走線的長度必須大大縮短,以保持信號的完整性。
有兩種方法能使高速電路在相對長的線上工作而無嚴重的波形失真,TTL對快速下降邊沿採用肖特基二極體箝位方法,使過沖量被箝制在比地電位低一個二極體壓降的電平上,這就減少了後面的反沖幅度,較慢的上升邊緣允許有過沖,但它被在電平「H」狀態下電路的相對高的輸出阻抗(50~80Ω)所衰減。此外,由於電平「H」狀態的抗擾度較大,使反沖問題並不十分突出,對HCT系列的器件,若採用肖特基二極體箝位和串聯電阻端接方法相結合,其改善的效果將會更加明顯。
當沿信號線有扇出時,在較高的位速率和較快的邊沿速率下,上述介紹的TTL整形方法顯得有些不足。因為線中存在著反射波,它們在高位速率下將趨於合成,從而引起信號嚴重失真和抗干擾能力降低。因此,為了解決反射問題,在ECL系統中通常使用另外一種方法:線阻抗匹配法。用這種方法能使反射受到控制,信號的完整性得到保證。
嚴格他說,對於有較慢邊沿速度的常規TTL和CMOS器件來說,傳輸線並不是十分需要的.對有較快邊沿速度的高速ECL器件,傳輸線也不總是需要的。但是當使用傳輸線時,它們具有能預測連線時延和通過阻抗匹配來控制反射和振盪的優點。1
決定是否採用傳輸線的基本因素有以下五個。它們是: (1)系統信號的沿速率, (2)連線距離 (3)容性負載(扇出的多少), (4)電阻性負載(線的端接方式); (5)允許的反沖和過沖百分比(交流抗擾度的降低程度)。
2.傳輸線的幾種類型
(1) 同軸電纜和雙絞線:它們經常用在系統與系統之間的連接。同軸電纜的特性阻抗通常有50Ω和75Ω,雙絞線通常為110Ω。
(2)印製板上的微帶線
微帶線是一根帶狀導(信號線).與地平面之間用一種電介質隔離開。如果線的厚度、寬度以及與地平面之間的距離是可控制的,則它的特性阻抗也是可以控制的。微帶線的特性阻抗Z0為:
式中:【Er為印製板介質材料的相對介電常數
6為介電質層的厚度
W為線的寬度
t為線的厚度
單位長度微帶線的傳輸延遲時間,僅僅取決於介電常數而與線的寬度或間隔無關。
(3)印製板中的帶狀線
帶狀線是一條置於兩層導電平面之間的電介質中間的銅帶線。如果線的厚度和寬度、介質的介電常數以及兩層導電平面間的距離是可控的,那麼線的特性阻抗也是可控的,帶狀線的特性阻抗乙為:
式中:b是兩塊地線板間的距離
W為線的寬度
t為線的厚度
同樣,單位長度帶狀線的傳輸延遲時間與線的寬度或間距是無關的;僅取決於所用介質的相對介電常數。
3.端接傳輸線
在一條線的接收端用一個與線特性阻抗相等的電阻端接,則稱該傳輸線為並聯端接線。它主要是為了獲得最好的電性能,包括驅動分布負載而採用的。
有時為了節省電源消耗,對端接的電阻上再串接一個104電容形成交流端接電路,它能有效地降低直流損耗。
在驅動器和傳輸線之間串接一個電阻,而線的終端不再接端接電阻,這種端接方法稱之為串聯端接。較長線上的過沖和振鈴可用串聯阻尼或串聯端接技術來控制.串聯阻尼是利用一個與驅動門輸出端串聯的小電阻(一般為10~75Ω)來實現的.這種阻尼方法適合與特性阻抗來受控制的線相聯用(如底板布線,無地平面的電路板和大多數繞接線等。
串聯端接時串聯電阻的值與電路(驅動門)輸出阻抗之和等於傳輸線的特性阻抗.串聯聯端接線存在著只能在終端使用集總負載和傳輸延遲時間較長的缺點.但是,這可以通過使用多餘串聯端接傳輸線的方法加以克服。
4.非端接傳輸線
如果線延遲時間比信號上升時間短得多,可以在不用串聯端接或並聯端接的情況下使用傳輸線,如果一根非端接線的雙程延遲(信號在傳輸線上往返一次的時間)比脈沖信號的上升時間短,那麼由於非端接所引起的反沖大約是邏輯擺幅的15%。最大開路線長度近似為:
Lmax<tr/2tpd
式中:tr為上升時間
tpd為單位線長的傳輸延遲時間
5.幾種端接方式的比較
並聯端接線和串聯端接線都各有優點,究竟用哪一種,還是兩種都用,這要看設計者的愛好和系統的要求而定。 並聯端接線的主要優點是系統速度快和信號在線上傳輸完整無失真。長線上的負載既不會影響驅動長線的驅動門的傳輸延遲時間,又不會影響它的信號邊沿速度,但將使信號沿該長線的傳輸延遲時間增大。在驅動大扇出時,負載可經分支短線沿線分布,而不象串聯端接中那樣必須把負載集總在線的終端。
串聯端接方法使電路有驅動幾條平行負載線的能力,串聯端接線由於容性負載所引起的延遲時間增量約比相應並聯端接線的大一倍,而短線則因容性負載使邊沿速度放慢和驅動門延遲時間增大,但是,串聯端接線的串擾比並聯端接線的要小,其主要原因是沿串聯端接線傳送的信號幅度僅僅是二分之一的邏輯擺幅,因而開關電流也只有並聯端接的開關電流的一半,信號能量小串擾也就小。
二PCB板的布線技術
做PCB時是選用雙面板還是多層板,要看最高工作頻率和電路系統的復雜程度以及對組裝密度的要求來決定。在時鍾頻率超過200MHZ時最好選用多層板。如果工作頻率超過350MHz,最好選用以聚四氟乙烯作為介質層的印製電路板,因為它的高頻衰耗要小些,寄生電容要小些,傳輸速度要快些,還由於Z0較大而省功耗,對印製電路板的走線有如下原則要求
(1)所有平行信號線之間要盡量留有較大的間隔,以減少串擾。如果有兩條相距較近的信號線,最好在兩線之間走一條接地線,這樣可以起到屏蔽作用。
(2) 設計信號傳輸線時要避免急拐彎,以防傳輸線特性阻抗的突變而產生反射,要盡量設計成具有一定尺寸的均勻的圓弧線。
印製板的寬度可根據上述微帶線和帶狀線的特性阻抗計算公式計算,印製電路板上的微帶線的特性阻抗一般在50~120Ω之間。要想得到大的特性阻抗,線寬必須做得很窄。但很細的線條又不容易製作。綜合各種因素考慮,一般選擇68Ω左右的阻抗值比較合適,因為選擇68Ω的特性阻抗,可以在延遲時間和功耗之間達到最佳平衡。一條50Ω的傳輸線將消耗更多的功率;較大的阻抗固然可以使消耗功率減少,但會使傳輸延遲時間憎大。由於負線電容會造成傳輸延遲時間的增大和特性阻抗的降低。但特性阻抗很低的線段單位長度的本徵電容比較大,所以傳輸延遲時間及特性阻抗受負載電容的影響較小。具有適當端接的傳輸線的一個重要特徵是,分枝短線對線延遲時間應沒有什麼影響。當Z0為50Ω時。分枝短線的長度必須限制在2.5cm以內.以免出現很大的振鈴。
(4)對於雙面板(或六層板中走四層線).電路板兩面的線要互相垂直,以防止互相感應產主串擾。
(5)印製板上若裝有大電流器件,如繼電器、指示燈、喇叭等,它們的地線最好要分開單獨走,以減少地線上的雜訊,這些大電流器件的地線應連到插件板和背板上的一個獨立的地匯流排上去,而且這些獨立的地線還應該與整個系統的接地點相連接。
(6)如果板上有小信號放大器,則放大前的弱信號線要遠離強信號線,而且走線要盡可能地短,如有可能還要用地線對其進行屏蔽。
⑩ 大專電工基礎家庭電路如下圖的電路圖怎麼畫
畫電工線路圖一般多數人使用AutoCAD軟體。CAD即用於電氣設計領域的CAD軟體,可回以幫助電氣工程答師提高電氣設計的效率,減少重復勞動和差錯率。專業的電氣CAD軟體如利馳SuperWORKS等由於緊貼電氣設計需求,專為電氣專業量身定做,能夠幫助電氣工程師實現智能快速的電氣CAD設計工作,而廣受電氣工程師的好評,應用范圍也很廣。