1. 回归模型的能解决什么问题
多元线性回归模型表示一种地理现象与另外多种地理现象的依存关系,这时另外多种地理现象共同对一种地理现象产生影响,作为影响其分布与发展的重要因素。
设变量Y与变量X1,X2,…,Xm存在着线性回归关系,它的n个样本观测值为Yj,Xj1,Xj2,…Xjm(j=1,2,n),于是多元线性回归的数学模型可以写为:
可采用最小二乘法对上式中的待估回归系数β0,β1,…,βm进行估计,求得β值后,即可利用多元线性回归模型进行预测了。
计算了多元线性回归方程之后,为了将它用于解决实际预测问题,还必须进行数学检验。多元线性回归分析的数学检验,包括回归方程和回归系数的显著性检验。
回归方程的显著性检验,采用统计量:
式中: ,为回归平方和,其自由度为m; ,为剩余平方和,其自由度为(n-m-1)。
利用上式计算出F值后,再利用F分布表进行检验。给定显著性水平α,在F分布表中查出自由度为m和(n-m-1)的值Fα,如果F≥Fα,则说明Y与X1,X2,…,Xm的线性相关密切;反之,则说明两者线性关系不密切。
回归系数的显著性检验,采用统计量:
式中,Cii为相关矩阵C=A-1的对角线上的元素。
对于给定的置信水平α,查F分布表得Fα(n-m-1),若计算值Fi≥Fα,则拒绝原假设,即认为Xi是重要变量,反之,则认为Xi变量可以剔除。
多元线性回归模型的精度,可以利用剩余标准差
来衡量。S越小,则用回归方程预测Y越精确;反之亦然。
2. 相关线性回归问题,要详细过程。。以下为10家商店销售额和利润率的资料:
⊙﹏⊙b汗!这个很多年没接触啦。朋友,希望有人能帮助你。
3. 多重共线性问题的几种解决方法
多重共线性问题的几种解决方法
在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,Xk中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。
这里,我们总结了8个处理多重共线性问题的可用方法,大家在遇到多重共线性问题时可作参考:
1、保留重要解释变量,去掉次要或可替代解释变量
2、用相对数变量替代绝对数变量
3、差分法
4、逐步回归分析
5、主成份分析
6、偏最小二乘回归
7、岭回归
8、增加样本容量
这次我们主要研究逐步回归分析方法是如何处理多重共线性问题的。
逐步回归分析方法的基本思想是通过相关系数r 、拟合优度R2 和标准误差三个方面综合判断一系列回归方程的优劣,从而得到最优回归方程。具体方法分为两步:
第一步,先将被解释变量y对每个解释变量作简单回归:
对每一个回归方程进行统计检验分析(相关系数r 、拟合优度R2 和标准误差),并结合经济理论分析选出最优回归方程,也称为基本回归方程。
第二步,将其他解释变量逐一引入到基本回归方程中,建立一系列回归方程,根据每个新加的解释变量的标准差和复相关系数来考察其对每个回归系数的影响,一般根据如下标准进行分类判别:
1.如果新引进的解释变量使R2 得到提高,而其他参数回归系数在统计上和经济理论上仍然合理,则认为这个新引入的变量对回归模型是有利的,可以作为解释变量予以保留。
2.如果新引进的解释变量对R2 改进不明显,对其他回归系数也没有多大影响,则不必保留在回归模型中。
3.如果新引进的解释变量不仅改变了R2 ,而且对其他回归系数的数值或符号具有明显影响,则认为该解释变量为不利变量,引进后会使回归模型出现多重共线性问题。不利变量未必是多余的,如果它可能对被解释变量是不可缺少的,则不能简单舍弃,而是应研究改善模型的形式,寻找更符合实际的模型,重新进行估计。如果通过检验证明回归模型存在明显线性相关的两个解释变量中的其中一个可以被另一个很好地解释,则可略去其中对被解释变量影响较小的那个变量,模型中保留影响较大的那个变量。
下边我们通过实例来说明逐步回归分析方法在解决多重共线性问题上的具体应用过程。
具体实例
例1 设某地10年间有关服装消费、可支配收入、流动资产、服装类物价指数、总物价指数的调查数据如表1,请建立需求函数模型。
表1 服装消费及相关变量调查数据
年份
服装开支
C
(百万元)
可支配收入
Y
(百万元)
流动资产
L
(百万元)
服装类物价指数Pc
1992年=100
总物价指数
P0
1992年=100
1988
8.4
82.9
17.1
92
94
1989
9.6
88.0
21.3
93
96
1990
10.4
99.9
25.1
96
97
1991
11.4
105.3
29.0
94
97
1992
12.2
117.7
34.0
100
100
1993
14.2
131.0
40.0
101
101
1994
15.8
148.2
44.0
105
104
1995
17.9
161.8
49.0
112
109
1996
19.3
174.2
51.0
112
111
1997
20.8
184.7
53.0
112
111
(1)设对服装的需求函数为
用最小二乘法估计得估计模型:
模型的检验量得分,R2=0.998,D·W=3.383,F=626.4634
R2接近1,说明该回归模型与原始数据拟合得很好。由得出拒绝零假设,认为服装支出与解释变量间存在显著关系。
(2)求各解释变量的基本相关系数
上述基本相关系数表明解释变量间高度相关,也就是存在较严重的多重共线性。
(3)为检验多重共线性的影响,作如下简单回归:
各方程下边括号内的数字分别表示的是对应解释变量系数的t检验值。
观察以上四个方程,根据经济理论和统计检验(t检验值=41.937最大,拟合优度也最高),收入Y是最重要的解释变量,从而得出最优简单回归方程。
(4)将其余变量逐个引入,计算结果如下表2:
表2服装消费模型的估计
结果分析:
①在最优简单回归方程中引入变量Pc,使R2由0.9955提高到0.9957;根据经济理论分析,正号,负号是合理的。然而t检验不显著(),而从经济理论分析,Pc应该是重要因素。虽然Y与Pc高度相关,但并不影响收入Y回归系数的显著性和稳定性。依照第1条判别标准,Pc可能是“有利变量”,暂时给予保留。
②模型中引入变量L ,R2 由0.9957提高到0.9959, 值略有提高。一方面,虽然Y 与L ,Pc与L 均高度相关,但是L 的引入对回归系数、的影响不大(其中的值由0.1257变为0.1387,值由-0.0361变为-0.0345,变化很小);另一方面,根据经济理论的分析,L与服装支出C之间应该是正相关关系,即的符号应该为正号而非负号,依照第2条判别标准,解释变量L不必保留在模型中。
③舍去变量L ,加入变量P0 ,使R2 由0.9957提高到0.9980,R2 值改进较大。、、均显著(这三个回归系数的t检验值绝对值均大于),从经济意义上看也是合理的(服装支出C与Y,P0之间呈正相关,而与服装价格Pc之间呈负相关关系)。根据判别标准第1条,可以认为Pc、P0皆为“有利变量”,给予保留。
④最后再引入变量L ,此时R2 =0.9980没有增加(或几乎没有增加),新引入变量对其他三个解释变量的参数系数也没有产生多大影响,可以确定L 是多余变量,根据判别标准第2条,解释变量L 不必保留在模型中。
因此我们得到如下结论:回归模型为最优模型。
通过以上案例的分析,我们从理论和实际问题两方面具体了解了逐步回归分析是如何对多重共线性问题进行处理的。事实上,一般统计软件如SPSS,在回归模型的窗口中都会提供变量逐步进入的选项,勾选后实际上就是选择了运用逐步回归的思想来构建回归模型。运用SPSS软件不需要我们懂得其背后的运行规律,然而作为分析师,了解并理解模型背后的理论知识,将更有助于我们理解模型、解释结论背后的内在含义,从而达到更好地分析问题的目的。
4. 关于线性回归算法还可以解决日常生活中哪些问题
趋势线
一条趋势线代表着时间序列数据的长期走势。它告诉我们一组特定数据(如GDP、石油价格和股票价格)是否在一段时期内增长或下降。虽然我们可以用肉眼观察数据点在坐标系的位置大体画出趋势线,更恰当的方法是利用线性回归计算出趋势线的位置和斜率。
流行病学
有关吸烟对死亡率和发病率影响的早期证据来自采用了回归分析的观察性研究。为了在分析观测数据时减少伪相关,除最感兴趣的变量之外,通常研究人员还会在他们的回归模型里包括一些额外变量。例如,假设我们有一个回归模型,在这个回归模型中吸烟行为是我们最感兴趣的独立变量,其相关变量是经数年观察得到的吸烟者寿命。研究人员可能将社会经济地位当成一个额外的独立变量,已确保任何经观察所得的吸烟对寿命的影响不是由于教育或收入差异引起的。然而,我们不可能把所有可能混淆结果的变量都加入到实证分析中。例如,某种不存在的基因可能会增加人死亡的几率,还会让人的吸烟量增加。因此,比起采用观察数据的回归分析得出的结论,随机对照试验常能产生更令人信服的因果关系证据。当可控实验不可行时,回归分析的衍生,如工具变量回归,可尝试用来估计观测数据的因果关系。
金融
资本资产定价模型利用线性回归以及Beta系数的概念分析和计算投资的系统风险。这是从联系投资回报和所有风险性资产回报的模型Beta系数直接得出的。
经济学
线性回归是经济学的主要实证工具。例如,它是用来预测消费支出,固定投资支出,存货投资,一国出口产品的购买,进口支出,要求持有流动性资产,劳动力需求、劳动力供给。
5. 多元线性回归在解决实际问题上的基本思想以及主要步骤是什么。
由多个自变量的最优组合共同来预测或估计因变量。是用来做预测的。你可以用eviews或者spss都可以,多元线性回归模型算是比较基础的了。步骤包括变量设置、数据采集、数据拟合、检验、预测等。
6. 线性回归方程需要注意哪些问题,如何处理
建立回归方程应注意以下几点:
(1)讨论的问题要有意义,回归方程的选择要符合实际需要。
(2)拟合都是在一定范围内进行的,即在我们处理的数据的范围内。不能把我们得到的回归方程任意扩大范围。比如,我们处理人的身高和体重,其身高在1.6—1.9米。它们的关系可以近似是一条直线,但是超出这个范围,例如身高2米以上,就可能就是一条曲线。
(3)由最小二乘法的解法,不难看出,x关于y的回归方程,与y关于x的回归方程不是互为反函数的关系。这在中学无需讨论,但教师应该有所了解。 (4)得到了回归方程bxay后,可以用它来作预报和控制。预报是指给定x的值代入回归方程,得到y的预报值。控制是指,要求y达到某一确定的值,利用回归方程确定x的值
7. 线性回归的优缺点
了解决多元线性回归中自变量之间的多重共线性问题,常用的有三种方法: 岭回归、主成分回归和偏最小二乘回归。本文以考察职工平均货币工资为例,利用三种方法的sas程序进行了回归分析,根据分析结果总结出三种方法的优缺点,结果表明如果能够使用定性分析和定量分析结合的方法确定一个合适的k值,则岭回归可以很好地消除共线性影响;主成分回归和偏最小二乘回归采用成份提取的方法进行回归建模,由于偏最小二乘回归考虑到与因变量的关系,因而比主成分回归更具优越性。
8. 我在写一篇统计学论文,是使用一元线性回归分析来解决生活中或者社会中的实际问题的研究课题,
整个环节是一体的一个过程,学术容不得造假的,所以自己得亲自体验啊,一元线性回归其实在实际中并不多见,如农业的年份和产量之类可能存在;在试验研究中的某个环节相对来说较多,比如吸光度和浓度的关系等,所以你首先得明确方向,你要做哪一方面的论文。
9. 什么是回归分析回归分析有什么用主要解决什么问题
我只介绍一元线性回归的基本思想。 我们作一系列的随机试验,得到n组数据: (x1,y1),(x2,y2),…,(xn,yn). 如果我们研究的是确定性现象,当然这n个点是在同一直线上的。但是现在X与Y都是随机变量,即使X与Y之间真的存在线性关系,即确实有Y=aX+b的关系成立,由于随机因素的作用,一般地说,这n个点也不会在同一直线上。而X与Y之间实际上并不存在线性关系,由于随机因素的作用,这n个点在平面上也可能排成象在一条直线上那样的。回归分析,就是要解决这样的问题,即从试验得到的这样一组数据,我们是否应该相信X与Y之间存在线性关系,这当然要用到概率论的思想与方法。
10. 多元线性回归分析要解决的主要问题是什么
主要解决的是两组变量之间的因果关系