你们公司猛啊可惜不是一个城市
⑵ epc纠偏控制器有什么技术要求
GD-4B 型光电纠偏控制器为边缘位置检测装置(EPC),是对薄型软物料在传送过程中水平 方向位置偏移进行控制的系统,具有自动检测、自动跟踪、自动调整等功能。能对纸张、薄膜、不干胶带、铝箔等物料的标志线或边缘进行跟踪纠偏,以保证卷绕、分切的整齐。该系统可用于轻工、纺织、印染、印刷等行业。 该系统用光电开关检测物料边缘的位置,由同步电机驱动器、同步电机、丝杠、拖板等组成执行机构,完成对物料的牵引,修正物料运行时的偏差。 GD-4B光电纠偏控制器的控制单元由单片机及大规模集成电路组成,内置EEPROM数据存储器,可永久保存用户的状态设置,掉电不丢失数据;内置死机自恢复电路、EMI干扰抑制电路,系统可在较恶劣的环境工作;整个系统采用“模块化”理念设计,便于用户组成综合控制系统。
技术指标
1. 跟踪标志宽度>2mm
2.光电检测开关与物料的距离 12mm±2mm
3.响应时间25ms
4.灵敏度 ±0.5mm
5.驱动器速度:8mm/s
6.推动力:50-500Kgf(由电机的输出功率决定)
7.位置失控保护
8. 光电开关输出方式:NPN常开型
9. 安装方式:嵌入式;面板尺寸:197*105;开孔尺寸:180*92
二、工作条件
1. 工作电压 AC 220V±10% 50Hz
2. 环境温度 50 oC以下
3. 空气湿度 ≤85% (25 oC)
三、工作原理
本系统中,由光电检测开关检测单边或双边的位置,以拾取位置偏差信号。再将位置偏差信号进行逻辑运算,产生控制信号,用同步电机驱动机械执行机构(丝杠、拖板等),修正物料运行时的蛇型偏差,控制物料直线运动。 在偏差方向上设置左、右限位开关,防止系统失控。 单边双开关控制时,光电头置于材料一边。使材料边缘处于光电传感器二不灵敏区内。优点:控制误差较小,材料宽度变化时,光电头位置可以不变。缺点:如果边缘破损,会强制跟踪导致材料撕断。材料走完,执行机构会跑到极限位置。 单边单开关控制时,光电头置于材料一边。使材料边缘处于光电传感器光斑下。优点:控制误差较小,调试 简单;材料宽度变化时,光电头位置可以不变。缺点:如果边缘破损,会强制跟踪导致材料撕断;材料走完,执行机构会跑到极限位置;无平衡点,电机不停转动。 双边控制时,用两个光电开关,分别置于材料两边,始终保持两光电头状态相同。优点是:如果材料边缘破损,或材料走完,都不影响运行。缺点:如果材料宽度经常变化,就需要经常改变光电头位置,如果两光电头光轴之间的距离与材料宽度不等,则会产生纠偏误差。
⑶ 线路板的制作流程
制程名称
制 程 简 介 内 容 说 明
印刷电路板
在电子装配中,印刷电路板(Printed Circuit Boards)是个关键零件。它搭载其他的电子零件并连通电路,以提供一个安稳的电路工作环境。如以其上电路配置的情形可概分为三类:
【单面板】将提供零件连接的金属线路布置於绝缘的基板材料上,该基板同时也是安装零件的支撑载具。
【双面板】当单面的电路不足以提供电子零件连接需求时,便可将电路布置於基板的两面,并在板上布建通孔电路以连通板面两侧电路。
【多层板】在较复杂的应用需求时,电路可以被布置成多层的结构并压合在一起,并在层间布建通孔电路连通各层电路。
内层线路
铜箔基板先裁切成适合加工生产的尺寸大小。基板压膜前通常需先用刷磨、微蚀等方法将板面铜箔做适当的粗化处理,再以适当的温度及压力将乾膜光阻密合贴附其上。将贴好乾膜光阻的基板送入紫外线曝光机中曝光,光阻在底片透光区域受紫外线照射后会产生聚合反应(该区域的乾膜在稍后的显影、蚀铜步骤中将被保留下来当作蚀刻阻剂),而将底片上的线路影像移转到板面乾膜光阻上。撕去膜面上的保护胶膜后,先以碳酸钠水溶液将膜面上未受光照的区域显影去除,再用盐酸及双氧水混合溶液将裸露出来的铜箔腐蚀去除,形成线路。最后再以氢氧化钠水溶液将功成身退的乾膜光阻洗除。对於六层(含)以上的内层线路板以自动定位冲孔机冲出层间线路对位的铆合基准孔。
压 合
完成后的内层线路板须以玻璃纤维树脂胶片与外层线路铜箔黏合。在压合前,内层板需先经黑(氧)化处理,使铜面钝化增加绝缘性;并使内层线路的铜面粗化以便能和胶片产生良好的黏合性能。叠合时先将六层线路[含]以上的内层线路板用铆钉机成对的铆合。再用盛盘将其整齐叠放於镜面钢板之间,送入真空压合机中以适当之温度及压力使胶片硬化黏合。压合后的电路板以X光自动定位钻靶机钻出靶孔做为内外层线路对位的基准孔。并将板边做适当的细裁切割,以方便后续加工。
钻 孔
将电路板以CNC钻孔机钻出层间电路的导通孔道及焊接零件的固定孔。钻孔时用插梢透过先前钻出的靶孔将电路板固定於钻孔机床台上,同时加上平整的下垫板(酚醛树酯板或木浆板)与上盖板(铝板)以减少钻孔毛头的发生。
镀 通 孔
一 次 铜
在层间导通孔道成型后需於其上布建金属铜层,以完成层间电路的导通。先以重度刷磨及高压冲洗的方式清理孔上的毛头及孔中的粉屑,再以高锰酸钾溶液去除孔壁铜面上的胶渣。在清理乾净的孔壁上浸泡附著上锡钯胶质层,再将其还原成金属钯。将电路板浸於化学铜溶液中,藉著钯金属的催化作用将溶液中的铜离子还原沉积附著於孔壁上,形成通孔电路。再以硫酸铜浴电镀的方式将导通孔内的铜层加厚到足够抵抗后续加工及使用环境冲击的厚度。
外层线路
二 次 铜
在线路影像转移的制作上如同内层线路,但在线路蚀刻上则分成正片与负片两种生产方式。负片的生产方式如同内层线路制作,在显影后直接蚀铜、去膜即算完成。正片的生产方式则是在显影后再加镀二次铜与锡铅(该区域的锡铅在稍后的蚀铜步骤中将被保留下来当作蚀刻阻剂),去膜后以碱性的氨水、氯化铜混合溶液将裸露出来的铜箔腐蚀去除,形成线路。最后再以锡铅剥除液将功成身退的锡铅层剥除(在早期曾有保留锡铅层,经重鎔后用来包覆线路当作保护层的做法,现多不用)。
防焊绿漆
外层线路完成后需再披覆绝缘的树酯层来保护线路避免氧化及焊接短路。涂装前通常需先用刷磨、微蚀等方法将线路板铜面做适当的粗化清洁处理。而后以网版印刷、帘涂、静电喷涂…等方式将液态感光绿漆涂覆於板面上,再预烘乾燥(乾膜感光绿漆则是以真空压膜机将其压合披覆於板面上)。待其冷却后送入紫外线曝光机中曝光,绿漆在底片透光区域受紫外线照射后会产生聚合反应(该区域的绿漆在稍后的显影步骤中将被保留下来),以碳酸钠水溶液将涂膜上未受光照的区域显影去除。最后再加以高温烘烤使绿漆中的树酯完全硬化。
较早期的绿漆是用网版印刷后直接热烘(或紫外线照射)让漆膜硬化的方式生产。但因其在印刷及硬化的过程中常会造成绿漆渗透到线路终端接点的铜面上而产生零件焊接及使用上的困扰,现在除了线路简单粗犷的电路板使用外,多改用感光绿漆进行生产。
文字印刷
将客户所需的文字、商标或零件标号以网版印刷的方式印在板面上,再用热烘(或紫外线照射)的方式让文字漆墨硬化。
接点加工
防焊绿漆覆盖了大部份的线路铜面,仅露出供零件焊接、电性测试及电路板插接用的终端接点。该端点需另加适当保护层,以避免在长期使用中连通阳极(+)的端点产生氧化物,影响电路稳定性及造成安全顾虑。
【镀金】在电路板的插接端点上(俗称金手指)镀上一层高硬度耐磨损的镍层及高化学钝性的金层来保护端点及提供良好接通性能。
【喷锡】在电路板的焊接端点上以热风整平的方式覆盖上一层锡铅合金层,来保护电路板端点及提供良好的焊接性能。
【预焊】在电路板的焊接端点上以浸染的方式覆盖上一层抗氧化预焊皮膜,在焊接前暂时保护焊接端点及提供较平整的焊接面,使有良好的焊接性能。
【碳墨】在电路板的接触端点上以网版印刷的方式印上一层碳墨,以保护端点及提供良好的接通性能。
成型切割
将电路板以CNC成型机(或模具冲床)切割成客户需求的外型尺寸。切割时用插梢透过先前钻出的定位孔将电路板固定於床台(或模具)上成型。切割后金手指部位再进行磨斜角加工以方便电路板插接使用。对於多联片成型的电路板多需加开X形折断线,以方便客户於插件后分割拆解。最后再将电路板上的粉屑及表面的离子污染物洗净。
终检包装
在包装前对电路板进行最后的电性导通、阻抗测试及焊锡性、热冲击耐受性试验。并以适度的烘烤消除电路板在制程中所吸附的湿气及积存的热应力,最后再用真空袋封装出货。
⑷ PCB板变形怎么办
1.Pcb板变形已经没法用了,因为它的线路有可能从内部断裂,只能再换一个PCb电路板。
2.如果pcb电路板上轻微变形,你可以通过在高温上烤一下。再用直尺给它压平。
⑸ 航模 陀螺仪 原理
你所查找的“带环”的陀螺仪是机械陀螺仪,主要是利用角动量守恒原理,因此它主要是一个不停转动的物体,它的转轴指向不随承载它的支架的旋转而变化。
你看到的是个电路板的陀螺仪是MEMS陀螺仪,也就是微机电陀螺仪,在航模、手机、相机中广泛运用,MEMS陀螺仪利用科里奥利力——旋转物体在有径向运动时所受到的切向力,里面是不会有圈圈环环的,哈哈~~~
其基本原理如下:
MEMS陀螺仪通常有两个方向的可移动电容板。径向的电容板加震荡电压迫使物体作径向运动(有点象加速度计中的自测试模式),横向的电容板测量由于横向科里奥利运动带来的电容变化(就象加速度计测量加速度)。因为科里奥利力正比于角速度,所以由电容的变化可以计算出角速度。
现在你明白这玩意儿是咋把角运动信号转换成电信号的了吧,但是要想了解陀螺仪导航原理,网络限制作答的1W字不够写的,哈哈~~这属于惯性导航范畴了,可以多交流。
作答完毕,希望有帮助。
给你张iphone的陀螺仪照片,哈哈