⑴ 手机充电器原理是什么
这是手机充电器的原理:
先把频率低的(50Hz)的交流整流为直流,然后用场效应管(相当于轮流开关的开关)把这个直流开关成高频(几十KHz)的交流信号,然后通过变压器变压,再整流成直流。这样的目的是为了减小磁性元件即变压器的尺寸。220交流整流,然后用振荡电路起振(多数是自激的),成为几十千赫兹的高频信号,然后通过隔离的高频小变压器变压为几伏的低压高频,进行滤波、稳压然后输出5-6伏的直流(按手机分)给手机充电。类似于小的开关电源,同比工频变压器(很重的那种铁芯变压器)效率高、重量轻。
现在的手机充电器多采用锂离子电池,说到这个锂离子电池呢,先来简单的介绍一下,所谓锂离子电池就是使用能够吸藏、脱离锂离子的碳材料作为负极活性物质的电池,锂离子符号为Li-ion。电池一般都是由正极,负极,隔膜,电解液等基本的元素组成。
锂离子电池的充电过程分为两个步骤:先是恒流充电,其电流恒定,电压不断升高,当电压充到4.2V的时候自动转换为恒压充电,在恒压充电时电压恒定,电流是越来越小的直到充电电流小于预先设定值为止,所以有人用直充对手机电池进行充电的时候明明电量显示已经满格了,可是还是显示正在充电,其实这个时候的电压已经达到了4.2V所以电量显示为满格,那时就是在进行恒压充电过程。
为什么要进行恒压充电呢,直接用恒流充到4.2V不就行了吗,其实很容易解释,因为每一个电池都有一定的内阻,当用恒流进行充电到4.2V的时候,这个4.2V其实并不是电池实际的电压,而是电池的电压加上电池内阻上消耗的电压之和,如果电流很大那么在内阻上消耗的电压也就很大,所以那是实际电池的电压可能比4.2V小很多,所以要用恒压充电过程,把充电的电流慢慢降下来,这样电池的实际电压就很接近4.2V。
手机充电时,充电器先将220V交流电通过整流电路变成高压直流电,然后再通过开关管变成高频高压脉冲,之后再通过变压器变成低压脉冲,低压的具体数值取决于被充电设备需要的电压。最后,低压脉冲经过整流、稳压电路,变成相应的直流电。也就是说,从220V交流电到5V直流电的过程主要会经过整流电路、变压器、稳压电路等,充电器只是改变了电能的形态而已。
⑵ 手机充电器电路图原理
电路原理
在早期的手机通用充电器电路设计时,由于考虑到锂电池与镍氢电池充电特点的不同(锂电池充电电压为4.2V-4.4V,镍氢电池充电电压为4.3V-4.5V,且在给镍氢电池充电前,应先放电,以防止出现记忆效应)因此充电器电路比较复杂,一般由开关电源、基准电压、充电控制、放电控制和充电指示等电路组成,且基准电压、充电指示及充、放电控制电路多由运算放大器控制。近年来,由于绝大多数手机采用锂电池,加之出于制造成本考虑,通用型手机充电器的电路已非常简单,实为一简单的自激式开关电源电路。图1为一款诺基亚手机通用充电器实绘电路。 AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升至一定值时,在R3的作用下,Q2再次导通,重复上述过程,如此周而复始,形成自激振荡。在Q2导通期间,L3中的感应电动势极性为上负下正,D7截止;在Q2截止期间,L3中的感应电动势极性为上正下负,D7导通,向外供电。 图1中,VD1、Q1等元件组成稳压电压。若输出电压过高,则L2绕组的感应电压也将升高,D1整流、C4滤波所得电压升高。由于VD1两端始终保持5.6V的稳压值,则Q1 b极电压升高,Q1导通程序加深,即对Q2 b极电流的分流作用增强,Q2提前截止,输出电压下降 若输出电压降低,其稳压控制过程与上述相反。 另外,R6、R4、Q1组成过流保护电路。若流过Q2的电流过大时,R6上的压降增加,Q1导通,Q2截止,以防止Q2过流损坏。
⑶ 手机充电器电路图及原理图
手机充电器电路图及原理图:
电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在 150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电。
含义
振荡电路该 电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T的初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。
⑷ 充电电路工作原理
超力通手机旅行充电器适合给摩托罗拉308、328、338及368等系列手机电池充电。该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。笔者根据实物绘出了工作原理图,供读者参考。
手机旅行充电器电路及工作原理
该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输出电压取样进行控制。因此这种电源也称非周期性开关电源。
220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。由V2和开关变压器组成间歇振荡器。开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。由于正反馈作用,V2 Ic迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。V2的截止时间与其输出电压呈反比。VD17的导通/截止直接受电网电压和负载的影响。电网电压越低或负载电流越大,VD17的导通时间越短,V2的导通时间越长,反之,电网电压越高或负载电流越小,VD5的整流电压越高,VD17的导通时间越长,V2的导通时间越短。V1是过流保护管,R5是V2 Ie的取样电阻。当V2 Ie过大时,R5上的电压降使V1导通,V2截止,可有效消除开机瞬间的冲击电流,同时对VD17的控制功能也是一种补偿。VD17以电压取样来控制V2的振荡时间,而V1是以电流取样来控制V2振荡时间的。
如果是为镍镉、镍氢电池充电,由于这类电池存在一定的记忆效应,需不定时对其进行放电。SW1是镍镉、镍氢、锂离子电池充电转换开关。SW1与精密基准电源SL431为运放LM324⑨提供两个不同的精密基准源,由SW1切换。在给镍镉、镍氢电池充电时,LM324⑨脚的基准电压约0.09V(空载);在给锂离子电池充电时,LM324⑨脚的基准电压约为0.08V(空载),这种设计是由这两种类型电池特有的化学特性决定的。按下SW2,V5基极瞬间得一低电平而导通,可充电池上的残余电压通过V5的ec极在R17上放电,同时放电指示灯VD14点亮。在按下SW2后会随即释放,这时可充电池上的残余电压通过R16、R13分压,C9滤波后为V4的基极提供一个高电平,V4导通,这相当于短接SW2。随着放电时间的延长,可充电池上的残余电压也越来越低,当V4基极上的电压不能维持其继续导通时,V4截止,放电终止,充电器随即转入充电状态。
由于锂电不存在记忆效应,当电池低于3V时便不能开机,其残余电压经电阻R40、R41分压后得到2.53V送入运算放大器的同相端③、⑤、⑩脚,由于LM324⑨脚电压在负载下始终为2.66V,因此⑧脚输出低电平,V3导通,+9V电压通过V3 ec极、VD8向可充电池充电。IC1 d在电容C6的作用下,{14}脚输出的是脉冲信号,由于IC1⑧脚为低电平,因此VD12处于闪烁状态,以指示电池正在充电,对应容量为20%。随着充电时间的延长,可充电池上的电压逐渐上升。当R40、R41的分压值约等于2.58V时,即IC1③脚等于2.58V时,IC1②脚经电阻分压后得2.57V,其①脚输出高电平(由于在充电时,IC1⑨脚电压始终是2.66V,V6导通;反之在空载时,IC1⑨脚为0.08V,V6截止),VD10、VD11点亮,对应指示容量为40%、60%。当R40、R41的分压值上升到2.63V时,即IC1⑤脚等于2.63V,其⑥脚经电阻分压后得2.63V,⑦脚输出高电平,VD9点亮,对应充电容量为80%。只有IC1⑩脚电压≥2.66V时,⑧脚才输出高电平,VD13点亮,对应充电容量为100%。即使VD13点亮时,VD12仍处于闪烁状态,这表示电池仍未达到完全饱和。只有IC1⑧脚电压>6.5V时,VD12才逐渐熄灭,表示电池完全充至饱和。
⑸ 手机充电器电路图及原理图
手机充电器电路图及原理图:
电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在 150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电。
含义
VD1、Q1等元件组成稳压电压。若输出电压过信哗高,则L2绕组的感应电压也将升高,D1整流、C4滤袜茄波所得电压升高。由于VD1两端始终保持5.6V的稳压值,则Q1b极电压升高,Q1导通程序加深,即对Q2b极电流的分流作用增强,Q2提前截止,输出电压下降若输出电压降低,其稳压控制过告坦察程与上述相反。
另外,R6、R4、Q1组成过流保护电路。若流过Q2的电流过大时,R6上的压降增加,Q1导通,Q2截止,以防止Q2过流损坏。
⑹ 手机充电器电路图分析
稳压管工作时是需要加反向电压才能正常工作的。依据这个规则,你就可以理解在电路里的接法了。所以这个接法是正确的。至于工作原理,有知友已说的很清楚了,如果不懂,建议你多看看书学习学习。
⑺ 请问哪为告诉我详细的手机充电原理
手机充电时,充电器先将220V交流电通过整流电路变成高压直流帆旁扒电,然后再通过开关管变成高频高压脉冲,之后再通过变压器变成低压脉冲,低压的具体数值取决于被充电设备需要的电压。最后,低压脉冲经过整流、稳压电路,变成相应的直流电。
电池的充电过程分为两个步骤:先是恒流充电,其电流恒定,电压不断升高,当电压充到4.2V的时候自动转换为恒压充电,在恒压充电时电压恒定,电流是越来越小的直到充电电流小于预先设定值为止。
(7)手机充电电路详解扩展阅读:
充电器使用注意事项
1、不要充电器暴露在高温或严寒下,像夏天气温高,充电器会散热不好,电流不稳,增加发生问题的可能性,特别是机身为金属材质的手机更容易导电。还有些用户夏天手掌出汗多,或洗完澡头发潮湿,都会引发触电。此外,由于手机通风、散热能力态昌较差,充电时不要将手机捂在被窝里或者枕头下面,以免造成电池的温度比较高,进而发生击穿、燃烧、爆炸等悲剧。
2、充电器充满手机时及时拔掉。很多人为了方便,会将充电器一天到晚都插在插座上,随用随充。可是,此种做法却存在着一定的安全隐患,充电器一直插在插座上可能会导致充电器线圈发热,绝缘漆脱落而损坏,甚至因发热而启皮引发火灾。所以,大家在充电结束后或是长时间不在房间时,要及时将充电器拔掉,以防引起火灾。
3、手机充电器、电池都有一定的使用寿命,当充电器破损或者不好使用时一定要及时更换。
⑻ 请教如图的手机充电器电路元器件解释
如图所示:1、2、3是电解电容,作用是滤波。4是高压瓷片电容,作用是冷热地耦合,提高稳定性降低干扰。5是开关变压器,作用是变换电压。6是USB接口,对外提供+5V电压。7是整流卜衡二极管,作用是把交流变成直流。8是稳压二极管,作用是提供一个和尺稳定的参考电压。9是电阻,在这里的作用应该是启动。10是发光二极管,作用是指示电路的工作状态。另外,电路上标注Q1的是开关管,为开关变压器提供开关脉冲。标注U1者为集成IC,型棚做为整个电路提供相应的功能。
⑼ 万能充电路详解
本电路由开关电源,恒压限流充电和电池极性识别三大部分组成。
1、开关电源:如图:电路主要以开关管VT1和开关变压器T为核心组成间接取样式开关电源,实现AC-DC变换,输出6V左右的直流电。市电通过R1为限流,二极管VD2整流、电容C1滤波,得到280V左右的直流电压。一路经启动电阻R2加到VT1基极;一路经变压器绕组加到VT1集电极。由于C3 和R3 的正反馈作用,VT1和开关变压器T,以及外围元件组成一个组成间歇振荡器,将直流电变为40KHZ左右的交变电流,通过变压器的变换和降压,经过VD3整流和电容C5滤波,输出6V左右的直流电压,为后级电路供电。图中R4为电流取样电阻,DW为过压检测器件。它们和VT2一起构成过流、限压保护电路;电容C2为间歇定时电容,影响间歇时长短,从而可以改变输出电压高低。 2、恒压限流充电电路:图中Q2为充电控制三极管,TL431为三端可调稳压IC。IC的①脚外接取样电阻 R7、R8,决定着输出电压的高低。R6为Q2基极偏压电阻,TL431和Q2一起组成高精度串联稳压电路,输出稳定电压为4.2V;R5为充电限流电阻,将充电初期的电流限制在800mA以下,这样通过高精度稳压和限制最大充电电流而保证不损坏理电池。Q1为充电指示灯LED1的控制管。在充电初期,充电电流较大 ,R5两端的电压大于0.5V,此时 Q1导通,充电指示灯LED1得电发光;当电池接近充满时,充电电流变小,R5两端的电压降低,Q1导通电阻变大,LED1变暗,最后直到Q1截止而熄灭,表示电池接近充满。
3.电池极性自动识别与转换: Q3、Q4、Q5、Q6组成桥式极性转换电路。当接上待充电池时,若A端接电池的正极,B端接电池的负,此时,Q3 Q6导通,充电回路是:电源的+极—Q3(饱和)——电池+ —— Q6(饱和)—到地。反之,若B端接电池的正极, A端接电池的负,此时充电回路是:电源的+极—Q4(饱和)——电池+ —— Q5(饱和)—到地。这样就可实现电池极性的自动识别和自动转换,使操作更加简单。 二、选用和使用:
由于手机万能充电器厂家“多而杂”,产品质量参差不齐。质量差的充电器反而会缩短电池寿命甚至充坏电池,所以一般选择质量好的充电,一般从外壳光洁度和质量可以看出好坏。首先要测试电池的空载电压,用万用表直接测量充电端的两金属触片的电压,应该在4.2V最好,太低充不满,太高易过充而损坏电池。
1/2页
三、常见故障检修:
故障1:接上待充电池及电源后,所有指示灯不亮,无电压输出,不能给电池充电。
【分析与检修】:这种故障往往是开关电源故障。根据检修经验,一般是开关管VT1损坏最多,开关管损坏往往伴随限流电阻R1、R4和过流保护管VT2损坏。检测完这些元件,检修成功几率可达80%以上,其次就是发热元件引脚焊盘开裂造成接触不良。开关变压器T的次级之后电路的损坏概率不是很大。
故障2:各状态指示灯显示正常,接上待充电池及电源后,但就是充不进电或充电时间长。
【分析与检修】:这种故障多是三极管Q1或充电限流损坏,检测电阻是否变大或三极管是否损坏,用正常管子换上后即可排除故障。如果三极管Q1正常,再用表测电容C5(100μF/16V)两端电压,,正常在交流6V左右。若电压正常,说明电容C5或整流二极管VD3损坏;若电压低,应检查开关变压器T及其前级各元件。
总之,电路中电压高、电流大、易发热的元件容易损坏,要重点排查,在不明
⑽ 手机充电的原理,简单易懂
如何把枯燥的知识变得有趣,如何把抽象的东西变得生动,今天飞天科技就借用一个“放水”的简单模型让大家弄清楚有关手机充电的相关知识。
水箱:用来示意我们的电网,我们庞大的电网,你可以想象成搜答陵一桶水。
阀门:你可以想象成这是一个充电器,它通过反复的开关来控制流入杯中水的多少。如果没有这个阀门,你可以想象一下后果。国外习惯把充电器叫Adapter,意思是适配的作用。
水杯:可以想象成我们的手机电池,或者平板电池。水就是电量,通过水管传送过来。
手机充电器,其实是一个反激式的开关电源,一般有这几个概念:输出电压,输出电流,纹波,CV(恒压充电),CC(恒流充电),我们可以把手机充电的过程,理解成通过一个阀门往杯中加水世戚的过程,充电器就是一个阀门的作用:
输出电压: 水杯允许的最大储水高度,电压的多少是由充电器设计电路决定的。
输出电流: 水管大小决定了水流量的多少,电流想象成水流,电流大小由充举链电器电路设计决定的。
输出纹波: 水入到杯后,激起的波浪大小。
恒流充电:这个是很多人困惑的概念。你可以想象成杯中空水的状态下,我们用一个固定孔径的水管,往杯中注水,水流恒定的,即恒流。
恒压充电:水杯快满时,设定一个最高限制水位,不允许数量超过,通过降低阀门开通的时间和次数,减少水流量,从而达到恒压充电。要搞清楚这个概念,还要想象一下杯中的水插入了一根吸管,或多或少的水从杯中吸出,也就是负载的概念,你在加入水的同时,水还在被消耗。
这样一讲是不是整个充电流程包括各种概念都很清晰了呢?