㈠ 麻烦各位,能不能给我一个电容MIC的拾音电路
如图用的MAXIMADC用I2C控制ADCI2S输出
有问题可以联系
㈡ 亲,怎么做一个咪头的前置电路用于51单片机声音采集的
这是一个语音芯片的电路,左半部分是咪头信号处理,输入芯片的信号为36mv 左右,右边是输出信号处理,接扩音器
㈢ 音频信号的采集方式
电台等由于其自办频道的广告、新闻、广播剧、歌曲和转播节目等音频信号电平大小不一,导致节目播出时,音频信号忽大忽小,严重影响用户的收听效果。在转播时,由于传输距离等原因,在信号的输出端也存在信号大小不一的现象。过去,对大音频信号采用限幅方式,即对大信号进行限幅输出,小信号不予处理。这样,仍然存在音频信号过小时,用户自行调节音量,也会影响用户的收听效果。随着电子技术,计算机技术和通信技术的迅猛发展,数字信号处理技术已广泛地深入到人们生活等各个领域。其中语音处理是数字信号处理最活跃的研究方向之一,在IP电话和多媒体通信中得到广泛应用。语音处理可采用通用数字信号处理器DSP和现场可编程门阵列(FPGA) 实现,其中DSP实现方法具有实现简便、程序可移植行强、处理速度快等优点,特别是TI公司TMS320C54X系列在音频处理方面有很好的性价比,能够解决复杂的算法设计和满足系统的实时性要求,在许多领域得到广泛应用。在DSP的基础上对音频信号做AGC算法处理可以使输出电平保持在一定范围内,能够解决不同节目音频不均衡等问题。
TI公司DSP芯片TMS320VC5402具有独特的6总线哈佛结构,使其能够6条流水线同时工作,工作频率达到100MHZ。利用VC5402的2个多通道缓冲串行口(McBSP0和McBSP1)来实现与AIC23的无缝连接。VC5402的多通道带缓冲的串行口在标准串口的基础上加了一个2K的缓冲区。每次串口发送数据时,CPU自动将发送缓冲中的数据送出;而当接收数据时,CPU自动将收到的数据写入接收缓存。在自动缓冲方式下,不需每传送一个字就发一次中断,而是每通过一次缓冲器的边界,才产生中断至CPU,从而减少频繁中断对CPU的影响。
音频芯片采用TLV320 AIC23,它是TI公司的一款高性能立体声音频A/D,D/A放大电路。AIC23的模数转换和数模转换部件高度集成在芯片内部,采用了先进的过采样技术。AIC23的外部硬件接口分为模拟口和数字口。模拟口是用来输入输出音频信号的,支持线路输入和麦克风输入;有两组数字接口,其一是由/CS、SDIN、SCLK和MODE构成的数字控制接口。AIC23是一块可编程的音频芯片,通过数字控制口将芯片的控制字写入AIC23内部的寄存器,如采样率设置,工作方式设置等,共有12个寄存器。音频控制口与DSP的通信主要由多通道缓冲串行口McBSP1来实现。
AIC23通过数字音频口与DSP的McBSP0完成数据的通信,DSP做主机,AIC23做从机。主机提供发送时钟信号BCLKX0和发送帧同步信号BFSX0。在这种工作方式下,接收时种信号BCLKR0和接收帧同步信号BFSR0实际上都是由主机提供的。图1是AIC23与VC5402的接口连接。
AIC23的数字音频接口支持S(通用音顿格式)模式,也支持DSP模式(专与TIDSP连接模式),在此采用DSP模式。DSP模式工作时,它的帧宽度可以为一个bit长。图2是音频信号采集的具体电路图。
电路的设计和布线是信号采集过程中一个很重要的环节,它的效果直接关系到后期信号处理的质量。对于DSP达类高速器件,外部晶体经过内部的PLL倍频以后可达上百兆。这就要求信号线走等长线和绘制多层电路板来消除电磁干扰和信号的反射。在两层板的前提下,可以采取顶层与底层走交叉线、尽量加宽电源线和地线的宽度、电源线成树杈型、模拟区和数字区分开等原则,可以达到比较好的效果。
㈣ 小蜜蜂mingpai无线扩音器使用说明书
小蜜蜂mingpai无线扩音器使用说明书:
A、新购买回去的扩音器应该检查下有没有质量问题,比如有没有明显的外观问题,麦克风是不是良好的,电池电量是不是足,这儿很简单,只要配戴好扩音器说话测试即可,如果是扩音器本身有问题,机器可能就没声音,如果有声音那么扩音器的麦克风跟主机就是没问题的。如果电池电量低,那么可能说话的时候声音就不够大。
B、电池使用问题,新买回去的扩音器电池可能是电池厂生产过后就一直没有充电,处于休息.状态,在测试好扩音器极麦克风问题后,应该把扩音器关机后进行充电,在充够时间后再进行使用。
C、扩音器配戴,扩音器使用的时候,一定要先配戴好头戴麦克风,然后再开机,这样可以避免尖叫声,专业的名词号啸叫,扩音器的啸叫是不可避免的,只要方法得当就不会有啸叫。
D、麦克风使用,这个是很重要,需要注意的点,很多老师都因为麦克风使用不当造成啸叫说扩音器质量有问题。
小蜜蜂mingpai无线扩音器原理:
语音采集模块电路:这个语音采集电路采用双路音频放大集成电路。其主要特点是效率高、耗电省,静态工作电流典型值只有6mA左右,该集成电路的电压适应能力强(1.8V~15VDC),即使在1.8V低电压下使用,仍会有约 100mW的功率输出。
前置放大模块电路:通过音频采集电路输入的信号,信号幅度较小,且常常伴随有较大的噪声。先采用前置放大电路先将小信号放大。
这个放大的最主要目的不是信噪比,而是提高电路的增益,将需要的信号从噪声中分离出来。同时仪表放大器电路能够分辨的输入信号越小越好,动态范围越宽越好。
带通滤波模块电路:通过前置放大的语音信号带有外界和系统的杂音,为了消除这些杂音,必须加上一个带通滤波电路,去掉300Hz外的低频信号和3KHz外的高频信号。来提高声音的信噪比。
采用LM358的语音滤波器电路,串联组成的语音频率范围的滤波电路,其频带范围为360HZ-3KHZ。由一个低通滤波器和一个高通滤波器串联组成。
单片机控制无线发射接受模块:采用51单片机控制nRF24Z1来传送无线数字信号,用WM8738作为A /D转换器主要的模拟音频信号源,使用51微控制器作为无线话筒发射端的控制器 ,使用 2个 I/O引脚 模拟。
功放模块:通过无线接受到的数字信号,通过DA转换后输入到功放电路,通过3个通道对声音进行放大处理,含有R/L两个声道和一个低音通道,音效比较的理想。
在电路中采用双12V交流电压输出,2A以上电流。采用TDA2030作为功放,TL084做为前级,音质较好。电压电流输入范围:<=15V,可以负载两只普通喇叭一只低音喇叭。通过 变压器 的电源电路输入15V直流,功率:30w+30w+30w。
㈤ 一个8位DAC的单位量化电压为0.02V,档输入代码为00110010是,输出电压是多少
00110010的十六进制数值是32,换成十进制数值是50.那么输出电压 V=0.02V * 50=1.00V。