㈠ 调频电路的原理框图是由哪几部分组成
调频,全称“频来率自调制”。使载波的瞬时频率按照所需传递信号的变化规律而变化的调制方法。[1]它是一种使受调波瞬时频率随调制信号而变的调制方法。实现这种调制方法的电路称调频器,广泛用于调频广播、电视伴音、微波通信、锁相电路和扫频仪等方面。
㈡ 急求调频接收机电路原理图
自制45--470MHZ调频接收机
www.avrw.com
接收机具有高灵敏度线路简单,易于安装调试,由电池供电,工作稳定耗电少,体积小,便于携带等特点。电原理图见图1。
工作原理:由高频头将天线接收到的微弱调频信号进行放大和混频,混频后产生的31.5MHz伴音中频信号由IF端输出。ICl为调频接收集成块(由于高频头具有良好的调谐接收性能,而TDA7010T是专用调频接收1C,接收灵敏度达3uV,从而保证了整机具有很高的接收灵敏度),中频信号输入ICl的(11)脚,经ICl进行中频放大、调频检波后由②脚输出音频信号,IC2用于音频信号功率放大。T1、T2及LEDI等组成调谐指示电路。
T3、DWI、T4及相关元件组成6V稳压电路,为高频头及ICl提供稳定工作电压。T5、T6、B及相关元件组成升压逆变电路,通过T6、D3、DW3检测输出电压,以控制T5的振荡强度,达到稳压节能的目的。逆变电路输出33V调谐电压,供高频头调谐选台之用。Rt为温度补偿电阻,用于补偿开机初始因电容初充电造成33V调谐电压轻微不足(极轻微,用万用表测量不出)。图2为预选台电路,与K1配合使用。元件选择与制作:高频头可选用TDQ-3型470MHz全增补高频头,AFC脚留空,R1、R2、Cl选用微型或贴片元件,可直接焊接在高频头屏蔽盒内。调谐电位器W2选用100k多圈电位器,使调谐选台更方便,更稳定。ICl外围电路宜选用贴片元件安装,L用0.4mm漆包线在3mm的圆珠笔心上密绕23匝而成。升压逆变器B用1Omm小磁环作磁心(可从旧电子镇流器上拆用),用透明胶布包一层作绝缘处理,用0.25mm漆包线绕制,数据见图1上标注的数值。L3的作用是为6V稳压电路提供比电源电压略高(约0.8V)的偏置电压,以保证当电池电压下降至6.2V时仍有6V稳定电压输出。T4作恒流管用,DWI提供稳定的偏置电流。由于电源供电电路采取了相应措施,使6V输出电压和33V调谐电压非常稳定,保证了高频头和中放鉴频电路的高稳定性。电源选用6节7号镍氢充电电池或两块锂充电电池,CZ2为外接电源插孔。喇叭选用中50mm内磁式,整机可安装在14.5cmx8cmx2.2cm的塑料盒内。调试本接收机唯一需要调试的就是ICl的接收频率。为了保证其调谐为31.5MHz,可用正常接收的电视机配合调试:即用导线连接电视机高顿头IF端与TDA70IOT的天线输入端(即(11)脚),并连接地线;调整L,使之能收到伴音信号即可。测升压逆变电路工作电流约12mA;整机静态电流应小于45mA;电源电压在6.2~9V之间变化时,整机电流基本不变。使用效果本接收机经笔者半年多的使用和检验,效果令人非常满意。接收灵敏度很高(接收当地调频广播和电视台信号只需几厘米长的天线即可),工作稳定可靠;功耗低,小巧玲珑,令人爱不释手。由于高频头采取了低电压供电方式,使其工作电流大为下降。因此整机工作电流很小,从而利于用电池供电。本接收机的不足之处是开机初始需经过约3秒钟时间才能进入稳定工作状态。
㈢ 通信电子电路中对调频电路提出哪些要求
宽带中频放大电路的设计
摘 要
中频放大器是功率放大器的一种,同时具有选频的功能,即对特定频段的功率增益高于其他频段的增益。同时,它也是组成超外差接收机的一种,其任务是把变频得到的中频信号加以放大,然后送到检波器检波,具有工作频段较低,选择性好,工作稳定性好等特点。因此,中频放大电路在实际应用中对超外差收音机、选择性和通频带等性能指标起着极其重要的作用。在本次宽带中频放大的课程设计中,主要是通过超外差电路的工作原理来设计单元电路中各个独立的元件电路,然后对于整机电路和在此电路基础上的扩展电路进行设计,最后用仿真软件,进行仿真,调试,完成电路设计。
关键词:超外差电路,宽带中频,放大器
目录
1 设计摘要. 2
2 设计原理图. 3
3 调频电路工作原理. 4
3.2 直接调频原理. 4
3.3变容二极管直接调频原理. 5
4 电路各模块工作原理. 7
4.1变容二极管工作原理. 7
4.2 LC振荡电路工作原理. 8
4.2.1 电容三端反馈振荡电路. 9
4.2.2 电感三端反馈振荡电路. 10
5 课题要求的实现. 11
6 心得体会. 13
7 参考文献. 14
8 附录. 15
1 设计摘要
调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。
变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。
本课题载波由LC电容反馈三端振荡器组成主振回路,振荡频率有电路电感和电容决定,当受调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率受调制信号的控制,从而实现调频。
2 设计原理图
图2.1 原理图
3 调频电路工作原理
频率调制是对调制信号频谱进行非线性频率变换,而不是线性搬移,因而不能简单地用乘法器和滤波器来实现。实现调频的方法分为两大类:直接调频法和间接调频法。
3.1 间接调频原理
先将调制信号进行积分处理,然后用它控制载波的瞬时相位变化,从而实现间接控制载波的瞬时频率变化的方法,称为间接调频法。
根据前述调频与调相波之间的关系可知,调频波可看成将调制信号积分后的调相波。
这样,调相输出的信号相对积分后的调制信号而言是调相波,但对原调制信号而言则为调频波。这种实现调相的电路独立于高频载波振荡器以外,所以这种调频波突出的优点是载波中心频率的稳定性可以做得较高,但可能得到的最大频偏较小。
3.2 直接调频原理
用调制信号直接控制振荡器的瞬时频率变化的方法称为直接调频法。如果受控振荡器是产生正弦波的 LC 振荡器,则振荡频率主要取决于谐振回路的电感和电容。将受到调制信号控制的可变电抗与谐振回路连接,就可以使振荡频率按调制信号的规律变化,实现直接调频。
可变电抗器件的种类很多,其中应用最广的是变容二极管。作为电压控制的可变电容元件,它有工作频率高、损耗小和使用方便等优点。具有铁氧体磁芯的电感线圈,可以作为电流控制的可变电感元件。此外,由场效应管或其它有源器件组成的电抗管电路,可以等效为可控电容或可控电感。
直接调频法原理简单,频偏较大,但中心频率不易稳定。在正弦振荡器中,若使可控电抗器连接于晶体振荡器中,可以提高频率稳定度,但频偏减小。
3.3变容二极管直接调频原理
变容二极管调频电路是有主振电路和调频电路构成,T为振荡管,C1、C2、C3、L1为主振回路,D为变容二极管,Cc为耦合电容隔离直流,C4为高频滤波电容,C5为耦合电容,Cb为旁路电容。R1、R2为变容二极管提供一个静态反偏电压,R3为隔离电阻,Rb1、Rb2、Re、Rc给三极管提供一个合适静态工作点。
设调制信号为uΩ(t)=UΩm cosΩt,加在二极管上的反向直流偏压为 VQ, VQ的取值应保证在未加调制信号时振荡器的振荡频率等于要求的载波频率,同时还应保证在调制信号uΩ(t)的变化范围内保持变容二极管在反向电压下工作。加在变容二极管上的控制电压为
ur (t)= VQ+ UΩm cosΩt 式(3-1)
根据式(3-1)可得,相应的变容二极管结电容变化规律为
(1)当调制信号电压uΩ(t)=0时,即为载波状态。此时ur (t)= VQ,对应的变容二极管结电容为CjQ
(2)当调制信号电压uΩ(t)=UΩm cosΩt时,对应的变容二极管的结电容与载波状态时变容二极管的结电容的关系是
令m= uΩ/(UD+VQ)为电容调制度,则可得
上式表示的是变容二极管的结电容与调制电压的关系。而变容二极管调频器的瞬时频率与调制电压的关系由振荡回路决定
无调制时,谐振回路的总电容为
;
CQ为静态工作点所对应的变容二极管节电压。
当有调制时,谐振回路的总电容为:
C∑=;
这回路的总电容的变化量为:△C=C∑-CQ∑;频偏△C与△f的关系:△f=1/2*f0*△C/ CQ∑。
由变容二极管部分接入振荡器振荡回路的等效电路。调频特性取决于回路的总电容C∑,而C∑可以看成一个等效的变容二极管, C∑随调制电压uΩ(t)的变化规律不仅决定于变容二极管的结电容Cj随调制电压uΩ(t)的变化,而且还与C1和C2的大小有关。因为变容二极管部分接人振荡回路,其中心频率稳定度比全部接入振荡回路要高,但其最大频偏要减小。
4 电路各模块工作原理
4.1变容二极管工作原理
变容二极管又称可变电抗二极管"。是一种利用PN结电容(势垒电容)与其反向偏置电压Vr的依赖关系及原理制成的二极管。所用材料多为硅或砷化镓单晶,并采用外延工艺技术。反偏电压愈大,则结电容愈小。变容二极管具有与衬底材料电阻率有关的串联电阻。主要参量是:零偏结电容、零偏压优值、反向击穿电压、中心反向偏压、标称电容、电容变化范围(以皮法为单位)以及截止频率等,对于不同用途,应选用不同C和Vr特性的变容二极管,如有专用于谐振电路调谐的电调变容二极管、适用于参放的参放变容二极管以及用于固体功率源中倍频、移相的功率阶跃变容二极管等。
变容二极管是根据PN结的结电容随反向电压大小而变化的原理设计的一种二极管。它的极间结构、伏安特性与一般检波二极管没有多大差别。不同的是在加反向偏压时,变容二管呈现较大的结电容。这个结电容的大小能灵敏地随反向偏压而变化。正是利用了变容二极管这一特性,将变容二极管接到振荡器的振荡回路中,作为可控电容元件,则回路的电容量会随调制信号电压而变化,从而改变振荡频率,达到调频的目的。
已知,结电容 C j 与反向电压 v R 存在如下关系:
图4.1.1变容二极管符号及电容公式
加到变容管上的反向电压,包括直流偏压 V 0 和调制信号电压 v W (t)= V W cos W t ,如图4.1.2所示,即
v R (t)= V 0 + V Wcos W t
此外假定调制信号为单音频简谐信号。结电容在 v R (t) 的控制下随时间发生变化。
图4.1.2用调制信号控制变容二极管结电容
把受到调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率亦受到调制信号的控制。适当选择变容二极管的特性和工作状态,可以使振荡频率的变化近似地与调制信号成线性关系。这样就实现了调频。
4.2 LC振荡电路工作原理
LC三点式振荡组成原理图如图4.2.1,其振荡频率f=。当
图4.2.1三点式振荡电路组成
和为容性,为感性时称为电容反馈振荡器,其中C=;当 和为感性,为容性时称为电容反馈振荡器,其中 L=+。当我们相应变化电容值时就能使频率作出相应的变化,以达到调频的目的。
4.2.1电容三端反馈振荡电路
图4.2.2电容三端反馈振荡电路交流电路
对于一个振荡器,当其负载阻抗及反馈系数已经确定的情况,静态工作点的位置对振荡器的起振以及稳定平衡状态(振幅大小,波形好坏)有着直接的影响。要想起振,首先三极管应该工作在静态工作点。电路应选择合适的静态工作点的位置。
电容三端反馈振荡电路利用电容C3和C2作为分压器,该电路满足相位条件,选取合适时满足振幅起振条件,即:,该电路就可振荡。可得到振荡频率近似为
式中:C是振荡回路的总电容。
该电路与电感三端反馈振荡电路相比,输出波形较好,波形更接近正弦波。适当地加大电路电容,就可减弱不稳定因素对振荡频率的影响,从而提高电路的稳定度。
这种振荡电路的特点是振荡频率可做得较高,一般可达到100MHz以上,由于C3对高次谐波阻抗小,使反馈电压中的高次谐波成分较小,因而振荡波形较好。电路的缺点是频率调节不便,这是因为调节电容来改变频率时,(既使C1、C2 采用双连可变电容)C1与C2也难于按比例变化,从而引起电路工作性能的不稳定。因此,该电路只适宜产生固定频率的振荡。
4.2.2电感三端反馈振荡电路
图4.2.3电感三端反馈振荡电路等效交流电路
由于L1与L2之间有互感的存在,所以容易起振。其次改变回路电容来调整频率时,基本上不影响电路的反馈系数。
它的输出振荡波形较差,这是由于反馈电压取自电感的两端,而电感对高次谐波的阻抗较大,不能将它短路,从而使Uf中含有较多的谐波分量,因此,输出波形中也就含有较多的高次谐波。工作频率愈高,分布参数的影响也愈严重,甚至可能使F减小到满不了起振条件。
电容三端反馈振荡电路利用电容L1和L2作为分压器,该电路满足相位条件,选取合适时满足振幅起振条件,即:,该电路就可振荡。可得到振荡频率近似为
式中:L=L1+L2+2M是振荡回路的总电容。
5 课题要求的实现
该电路电源电压12V,高频三极管3DG100,变容二极管ZCC1C(VQ=4V,CQ=75PF,Q处的斜率Kc=△j/△v=12.5PF/V)。已知VQ=4V,取R2=10K,R1=20k,来稳定静态电压VQ。隔离电压R3>>R1、R2,取R3=150k,令接入系数P=0.2,根据VQ和P值,P=Cc/(Cc+Cj),当VQ=4v时,可得到Cc=20PF。由于调制信号的频率几HZ~几KHZ,可取耦合电容C5=4.7uf,高频扼流圈L2=47uH。高频旁路电容C4对调制信号成高阻抗,取C4=5100PF。为稳定三极管的静态稳定点,取Rb1=60K,Rb2=20K,Rc=3K,Re=2k,旁路电容Cb=50uF。
变容二极管部分接人振荡回路,其中心频率稳定度比全部接入振荡回路要高,但其最大频偏要减小。
图5.1变容二极管部分接人振荡回路
该电路为了减少结电容对回路振荡频率的影响,C2和C3常取值较大,C1<<C2,C1<<C3,这该电路的振荡频率为
(公式5.1)
主振频率F0=5MHZ,取C2/C3=1/2,取C2=510PF,则C3=1100PF,取C1=15PF,由公式5.1的取L1=66.7uH。
最大的频偏△f=10KHZ,由公式和得K=0.05,由△f1=KA1.f0得A1=0.04,2CC1C为突变结变容二极管,r=1/2;则A1=1/16*m*(8+3/4m*m),得m=2A1=0.08;A0=1/16*m*m,则中心频偏△f0=KA0.f0=62.5HZ;则频率稳定度△f0/f0=62.5/5M=1.24*10-5<5*10-4,满足频率稳定度得要求。
调节三极管的稳定度和电阻参数,可使三极管的放大输出电压V0>=1V。
6 心得体会
通过学习高频电子线路这门课程,使我能综合运用电工技术,高频电子技术课程中的所学到的理论知识来完成设计和分析电路,熟悉了工程实践中高频电子电路的设计方法和规范,达到综合应用电子技术的目的。学会了文件检索和查找数据手册的能力。学会了应用protel软件的使用。还学会了整理和总结设计文档报告。学到很多东西,但就我个人感觉而言,学到的东西,对我后面一年的学习有重要的指导作用,不敢说以后,但在毕业前的这段时间内,这次学习对我的确很重要。
学到了如何务实,如何去学一门技术,同时也知道了如何学习,什么才是学习。这次设计,使我由理论学习向实际生产的方向更近了一步。让我对自己所学的专业有了更加清晰的理解,也对自己现在的专业技术水平有了更加明确的理解。这次的设计中,我体验到了一名专业电子设计工程师设计产品的各个过程,让我对自己的未来的职业定位有了充分的心里准备。总而言之,此次课程设计让我感到受益匪浅。
同时我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结协作的精神。某个元素的离群都可能导致整项工作的失败。设计中只靠一个人知道的是远远不够的,我们要综合运用各项知识。才能适应发展。
回顾起此次高频课程设计,至今我仍感慨颇多,在整整一星期的日子里,可以说得是苦多于甜,但是可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,我毕竟不是专家级的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,
通过对高频电路的学习,了解了现实社会中的某些东西的运用都是通过运行才实现的。在此次课程设计过程中,我们解决了一些主要问题,以便能解决实际问题,也通过老师的指导顺利的完成了课程设计。在以后的实验过程中,我会克服更多的困难,去学习,以便进行实践。
这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在同学和老师的辛勤指导下,终于游逆而解。同时,在老师的身上我学到很多实用的知识,在此我表示感谢!在本次高频设计的过程中,老师们给了我很大的指导和帮助。不仅使我在规定的时间内完成了系统的设计,同时还使我学到了很多有益的经验。在此,我谨向他们表示最衷心的感谢。
很感激学院让我们有这次学习的机会,这次学习对于我们没有真正实践经验的同学来说,绝对是一次成长的机会。
7 参考文献
[1] 李银华.电子线路设计指导.北京航空航天大学出版社,2005.6
[2] 谢嘉奎,宣月清,冯军.电子线路.高等教育出版社,2000.5
[3] 张肃文.高频电子线路.第五版 高等教育出版社,2004.11
[4] 谢自美.电子线路设计.实验.测试 华中科技大学出版社,2003.10
[5] 胡宴如.高频电子线路.北京:高等教育出版社,1993.5
8 附录
附表一 元件清单
电容:
1 47u C5
1 510P C2
1 15P C1
1 1100P C3
1 5100P C4
1 50u Cb
色环电阻:
1 47K R1
1 10K R2
1 150K R3
1 20K Rb2
1 60K Rb1
1 3K Re
1 2K Rc
色环电感:
1 66.7uH L1
1 47uH L2
变容二极管:
1 ZCC1C D1
三极管:
1 3DG100 T1
㈣ 调频电路工作原理
从左到右顺序:第一个9018是射频振荡,按参数频率在88-108M之间,话筒采集的声音通过第一级9018的BE结电容进行频率调制,中间的1000pF电容为振荡级退耦,不可省略。第一级信号能过33pF电容送入第二级9018做选频放大,第二级工作在甲类,微调第二级7T的线圈与发射信号谐振可得最好效果。最后33pF电容接入天线发射。但最好33pF接在7T线圈的第三圈抽头处,以阻抗匹配。
㈤ 音响设备原理与维修技术的内容简介
《音响设备原理与维修技术(电子电器专业)》是由国家教委职教司组织编写的全国中等职业学校电子电器专业规划教材。全书是以劳动部、机电部、商业部最新颁发的家用电子产品、家用电器维修行业音响设备中级维修工技术等级标准为依据编写的。全书分两篇,第一篇讲述了调幅收音机、调频立体声收音机、录放机、立体声收录机、电唱机、组合音响的工作原理,并从电路角度分析了上述机型的典型故障;第二篇的主线是收音机与录音机的安装、调测与维修,还以国内流行的调频、调幅立体声收录机为实例,围绕各种典型故障,分析与总结了收录机的一般检修方法与工艺。书中安排了一定课时的技能训练,以指导学生在实践中掌握音响设备的组装、调测与维修技能及工艺。《音响设备原理与维修技术(电子电器专业)》可作各类职业技术学校电子电器类专业教材,及音响设备维修人员、军地两用人才培训教材,对于无线电爱好者《音响设备原理与维修技术(电子电器专业)》也不失为一本较好的自学读物。
第一篇 音响设备原理及其典型故障分析
第一章 无线电波的发射与接收
第一节 无线电波的波长、频率与波段划分
第二节 无线电波的发射
第三节 收音机基本组成与主要性能指标
习题
第二章 调幅收音机原理及其典型故障分析
第一节 超外差式收音机概述
第二节 输入回路
第三节 变频电路
第四节 中频放大电路
第五节 检波和自动增益控制电路
第六节 低频放大电路
第七节 整机电路分析
习题
第三章 调频收音机原理及其典型故障分析与排除
第一节 调频广播与单声道调频收音机的基本组成
第二节 调频头电路
第三节 限幅器
第四节 鉴频器与去加重
第五节 调频/调幅(FM/AM)整机电路及其典型故障分析与排除
第六节 立体声广播与调频立体声收音机的组成
第七节 立体声解码器及其典型故障分析
第八节 调频/调幅立体声收音机整机电路分析
习题
第四章 盒式磁带录音机的基本原理与组成
第一节 电磁记录的基本原理
第二节 偏磁录音原理
第三节 抹音原理
第四节 录放音中的损耗及频率补偿
第五节 盒式磁带录音机的基本组成
习题
第五章 盒式磁带录音机的机芯工作原理
第一节 盒式磁带与磁头
第二节 盒式录音机驱动机构的功能、组成、种类及主要性能指标
第三节 恒速走带机构和快速进带、倒带机构
第四节 制动机构
第五节 功能操作机构与磁头机构
第六节 辅助功能机构
第七节 电机及其稳速
第八节 新型盒式录音机机芯
习题
第六章 盒式磁带录音机电路原理及其典型故障分析
第一节 电源电路
第二节 音频功率放大电路
第三节 放音均衡放大电路
第四节 录音输入与均衡放大电路
第五节 自动电平控制电路(ALC电路)
第六节 偏磁与抹音电路
第七节 集成录、放音前置放大与ALC电路
*第八节 录音机的一些辅助电路
第九节 录放整机电路原理及其典型故障分析
习题
第七章 收录机整机电路原理故障分析与排除
第一节 单声道收录机整机电路原理及其典型故障排除
习题
第二节 立体声收录机整机电路原理及其典型故障排除
第三节 立体声收录机综合故障检测与排除
习题
第八章 电唱机与卡拉OK机
第一节 模拟电唱机
第二节 激光唱机
第三节卡拉OK伴唱机
习题
*第九章 组合音响整机电路分析及常见故障检测与排除
第一节 组合音响的组成和使用方法
第二节 组合音响的电路特点和分析方法
第三节 组合音响整机电路分析
第四节 组合音响常见故障的检测与排除
习题
第二篇 音响设备的组装、调测与维修技能训练
第一章 调幅收音机的组装、调测与维修
第一节 收音机组装与维修的基本方法
习题
第二节 电源电路的安装、调测与维修
习题
第三节 低频放大器的安装、调测与维修
习题
第四节 中放、检波、AGC电路的安装、调测与维修
习题
第五节 输入回路与变频电路的安装、调测与维修
习题
第六节 收音部分整机调测
习题
第七节 收音部分综合故障分析与排除
第二章 调频收音机的调整
第一节 中频频率的调整
第二节 频率范围调整与统调
第三节 锁相环立体声解码电路的调整
习题
第三章 录放音部分的组装、调测与维修
第一节 录音机的专用零件及其检测方法
习题
第二节 录音机的灾体认识与机芯的一般性检测
习题
第三节 实验箱电路及其安装工艺
习题
第四节 电源电路的组装、调测与维修
习题
第五节 集成功放电路的组装、调测与维修
习题
第六节 放音均衡放大电路的组装、调测与维修
习题
第七节 录音电路的组装、调测与维修
习题
第八节 录放部分的整机调测
习题
第九节 机芯的典型故障现象与维修
习题
技能训练
技能训练一 收音机电路识读、印刷电路板制作及收音机各单元电路输出波形演示
技能训练二 单元放大电路的调测与故障检测、分析
技能训练三 收音机组装前元器件的准备
技能训练四 电源电路的安装与维修
技能训练五 低放电路的安装、调测与维修
技能训练六 中放、检波与AGC电路的安装、调测与维修
技能训练七 输入回路、变频电路的安装、调测与维修
技能训练八 收音部分整机调测与故障检测与排除
技能训练九 AM/FM收音机的安装、调整与故障检测与排除
技能训练十 录音机专用器件的识别与检测
技能训练十一 录音机机芯结构观察及检测
技能训练十二 收录机的拆装
技能训练十三 录音机电源电路的安装与维修
技能训练十四 录音机功放电路安装与维修
技能训练十五 录音、放音输入与前置均衡放大电路、ALC电路及偏磁与抹音电路的安装、调测与维修
技能训练十六 录、放部分整机调测与综合故障排除
技能训练十七 收录机实验箱的组装与故障排除
技能训练十八 立体声收录机装配、调试与故障排除
附表
附表1 常用动圈式扬声器特性
附表2 低频变压器的规格
附表3 常用中频变压器的特性数据
附表4 常用振荡线圈的特性数据
附表5 常用录放磁头规格型号及性能参数
附表6 常用抹音磁头规格型号性能参数
附表7 磁头代换表
附表8 部分国产机芯型号性能特点、厂家对照表
附表9 部分专用测量工具
附表10 各种音响集成块主要用途、应用机型及代用型号
附表11 调幅广播收音机基本参数及测量条件
附表12 调频广播收音机基本参数及测最条件
附表13 盒式录音机主要性能指标
附图
附图1 梅花M-905型立体声收录机原理图
附图2 钻石FL-888型组合音响(立体声调谐器2T1电原理图)
附图3 钻石FL-888型组合音响(立体声双卡录音座2L1电原理图)
附陶4 钻石FL-888型组合音响(立体声功率放大器4F1电原理图)
附图5 YQ-9202立体声收录机原理
附图6 YQ-9202立体声收录机印刷板图