1. 减少焊接飞溅的方法
我收集的资料,给你看看
CO2气体保护焊过程中金属飞溅损失约占焊丝熔金属的10%左右,严重的可达30~40%在最佳情况下,飞溅损可控制在2~4%范围内。
飞溅损失增大,会降低焊丝的熔敷系数,从而增加焊丝及电能的消耗,降低焊接生产率和焊接成本。
飞溅金属粘着到导电嘴端面和喷嘴内壁上,会使送丝不畅而影响电弧稳定性,降低保护气的保护作用,恶化焊缝成形质量。此外,飞溅金属粘着到导电嘴,喷嘴,焊缝及焊件表面上,尚需在焊后进行清理,这就增加了焊接的辅助工时。
焊接过程中飞溅出的金属,还容易烧坏焊工的工作服,甚至烫伤皮肤,恶化劳动条件。
由于金属飞溅引起上述问题,故如何防止和减小金属飞溅,一直是使用CO2气体保护焊时必须给予重视的问题。
CO2气体保护焊金属飞溅问题之所以突出,是和这种焊接方法的冶金特性及工艺特性有关:
a. 由冶金反应引起的飞溅:主要是由于焊接过程中熔滴和熔池中碳被氧化生成了CO气体,随着温度的升高,CO气体体积膨胀,若从熔滴或熔池中的外逸受到阻碍,就可能在局部范围爆破,从而产生大量的细颗粒飞溅金属。
b. 作用在焊丝电极斑点上的压力过大而引起飞溅:如用直流正极性长弧焊时,由于焊丝是阴极,受到的电极斑点压力较大,故焊丝容易产生粗大的熔滴和被顶偏而产生非轴向过渡,从而出现大颗粒的飞溅金属。
c. 由于熔滴过渡不正常而引起的飞溅:这类情况在短路过渡或大熔滴过渡时都会遇到。如短路过渡时,由于焊接电源的动特性选择与调节不当,而增大了飞溅金属。在长弧焊的时,由于弧根面积小,焊丝末端熔滴受到斑点压力,电磁力等作用被顶偏,除了产生非轴向大滴过渡外,往往还带有细颗粒的飞溅金属。
d. 由于焊接规范参数选择不当而引起飞溅:CO2气体保护焊过程中,
随着电弧电压的升高,飞溅金属要增大这是因为电弧电压升高,弧长变长,易引起焊丝未端的熔滴长大。在长弧焊(用大电流)时,熔滴易在焊丝未端产生无规则的晃动;而短弧焊(用小电流)时,将造成粗大的液体金属过桥,这些均引起飞溅增大。
减少飞溅的措施
从上面的分析可知,引起金属飞溅的因素很多,故要减小飞溅,需要根据实际情况进行具体分析,采取有针对性的解决措施。 一般说来,有下列一些措施可供考虑:
(一)正确选择工艺参数
1.焊接电流和电压 在CO2电弧中,对于每种直径的焊丝,其飞溅率和焊接电流之间都存在一定的规律。在小电流区域(短路过度区域)飞溅率较小,进入大电流区域后(细颗粒过度区域)飞溅率也较小,而中间区的飞溅率最大,电流小于150A或大于300A飞溅率都较小,介于两者之间的飞溅率较大。
在选择焊接电流时,应尽可能避开飞溅率高的电流区域。电流确定后在匹配适当的电压,以确保飞溅率最小,
2.焊枪角度 焊枪垂直时飞溅量最小,倾斜角度最大,飞溅越多。焊枪前倾或后倾最好不要超过20度。
3.焊丝伸出长度 焊丝伸出长度对飞溅也有影响。焊丝长度尽可能缩短。
(二)选用合适的焊丝材料,保护气成分。例如:
1. 尽可能选用焊碳量低的钢焊丝,以减小焊接过程中生成的CO气体。实践表明,当焊丝中焊碳量降低到0.04%时,可大大减小飞溅;
2. 采用管状焊丝进行焊接。由于管状焊丝的药芯中含有脱氧剂稳弧剂等造成气-渣联合保护,使焊接过程中非常稳定,飞溅可明显减小;
(三) 在长弧焊的时采用CO2 的混合气作保护气。
虽然通过合理选择规范参数以及采用潜弧方法等可降低飞溅率,但飞溅量仍然较大。在CO2气体中加入一定数量的Ar气,是减少颗粒过度焊金属飞溅最有效的方法。
在CO2气体中加入Ar气后,改变了纯二氧化碳气体的上述物理性质和化学性质。随着Ar气比例增大,飞溅逐渐减少。CO2+Ar混合气体除可克服飞溅外,也改善了焊缝成型,对焊缝溶深、焊缝高度及余高都有影响。
当含 60%时可明显的使过渡熔滴的尺寸变细,甚至得到喷射过渡,改善了熔滴过渡特性,减小金属飞溅。
(三)短路过度焊接时限制金属液桥爆断能量
短路过度焊接时,会引起金属飞溅,在短路过度的最后阶段,由于短路电流的急剧增大,使桥液金属迅速地加热,造成了热量的凝聚,最后导致桥爆裂而产生飞溅。
减少此种飞溅的方法: 在短路过渡焊接时,合理选择焊接电源特性并匹配合适的可调电流,以便当采用不同直径的焊丝焊接时均可调得合适的短路电流增长速度
(四)采用低飞溅率焊丝
1.对于实芯焊丝,在保证机械性能的前提下,应尽可能降低其中含碳量,并添加适量的钛、铝等合金元素。无论颗粒过度焊接或短路过度焊接都可显著减少由CO等气体引起的飞溅。
2.采用以Cs2CO3,K2CO3等物质活化处理过的焊丝,进行正极性焊接。
3.采用药芯焊丝。采用药芯焊丝的金属飞溅率越为实心焊丝的1/3。
焊接飞溅产生的原因及克服途径
________________________________________
[我的钢铁] 2009-06-19 07:55:11
在CO2焊中,大部分焊丝熔化金属可过渡到熔池,有一部分焊丝熔化金属飞向熔池之外,飞到熔池之外的金属称为飞溅。特别是粗焊丝CO2气体保护焊大参数焊接时,飞溅更为严重,飞溅率可达20%以上,这时就不可能进行正常焊接工作了。飞溅是有害的,它不但降低焊接生产率,影响焊接质量,而且使劳动条件变差。
由于焊接参数的不同,CO2焊具有不同的熔滴过渡形式,从而导致不同性质的飞溅。其中,可分为熔滴自由过渡时的飞溅和短路过渡时的飞溅。
(1)熔滴自由过渡时的飞溅熔滴自由过渡时的飞溅主要形式,在CO2气氛下,熔滴在斑点压力的作用下上挠,易形成大滴状飞溅。这种情况经常发生在较大电流焊接时,如用直径1.6mm焊丝、电流为300~350A,当电弧电压较高时就会产生。如果再增加电流,将产生细颗粒过渡,这时飞溅减小,主要产生在熔滴与焊丝之间的缩颈处,该处的电流密度较大使金属过热而爆断,形成颗粒细小的飞溅。在细颗粒过渡焊接过程中,可能由熔滴或熔池内抛出的小滴飞溅。这是由于焊丝或工件清理不当或焊丝含碳量较高,在熔化金属内部大量生成CO等气体,这些气体聚积到一定体积,压力增加而从液体金属中析出,造成小滴飞溅。大滴过渡时,如果熔滴在焊丝端头停留时间较长,加热温度很高,熔滴内部发生强烈的冶金反应或蒸发,同时猛烈地析出气体,使熔滴爆炸而生成飞溅。另外,在大滴状过渡时,偶尔还能出现飞溅,因为熔滴从焊丝脱落进入电弧中,在熔滴上出现串联电弧,在电弧力的作用下,熔滴有时落入熔池,也可能被抛出熔池而形成飞溅。
(2)熔滴短路过渡时的飞溅短路过渡时的飞溅形式很多。飞溅总是发生在短路小桥破断的瞬时。飞溅的大小决定于焊接条件,它常常在很大范围内改变。产生飞溅的原因目前有两种看法,一种看法认为飞溅是由于短路小桥电爆炸的结果。当熔滴与熔池接触时,熔滴成为焊丝与熔池的连接桥梁,所以称为液体小桥,并通过该小桥使电路短路。短路之后电流逐渐增加,小桥处的液体金属在电磁收缩力的作用下急剧收缩,形成很细的缩颈。随着电流的增加和缩颈的减小,小桥处的电流密度很快增加,对小桥急剧加热,造成过剩能量的积聚,最后导致小桥发生气化爆炸,同时引起金属飞溅。另一种看法认为短路飞溅是因为小桥爆断后,重新引燃电弧时,由于CO2气体被加热引起气体分解和体积膨胀,而产生强烈的气动冲击作用,该力作用在熔池和焊丝端头的熔滴上,它们在气动冲击作用下被抛出而产生飞溅。试验表明,前一种看法比较正确。飞溅多少与电爆炸能量有关,此能量主要是在小桥完全破坏之前的100~150μs时间内积聚起来的,主要是由这时的短路电流(即短路峰值电流)和小桥直径所决定。
小电流时,飞溅率通常在5%以下。限制短路峰值电流为最佳值时,飞溅率可降低到1%左右。在电流较大时,缩颈的位置对飞溅影响极大。所谓缩颈的位置是指缩颈出现在焊丝与熔滴之间,还是出现在熔池与熔滴之间。如果是前者,小桥的爆炸力推动熔滴向熔池过渡,而后者正相反,小桥爆炸力排斥熔滴过渡,并形成大量飞溅,最高可达25%以上。冷态引弧时或在焊接参数不合适的情况下(如送丝速度过快而电弧电压过低,焊丝伸出长度过大或焊接回路电感过大等)常常发生固体短路。这时固体焊丝可以直接被抛出,同时熔池金属也被抛出。在大电流射滴过渡时,偶尔发生短路,由于短路电流很大。所以将引起十分强烈的飞溅。
根据不同熔滴过渡形式下飞溅的不同成因,应采用不同的降低飞溅的不同成因,应采用不同的降低飞溅的方法:
1)在熔滴自由过渡时,应选择合理的焊接电流与焊接电压参数,避免使用大滴排斥过渡形式;同时,应选用优质焊接材料,如选用含C量低、具有脱氧元素Mn和Si的焊丝H08Mn2SiA等,避免由于焊接材料的冶金反应导致气体析出或膨胀引起的飞溅。
2)在短路过渡时,可以采用(Ar+CO2)混合气体代替CO2以减少飞溅。如加入φ(Ar)=20%~30%的Ar。这是由于随着含氩量的增加,电弧形态和熔滴过渡特点发生了改变。燃弧时电弧的弧根扩展,熔滴的轴向性增强。这一方面使得熔滴容易与熔池会合,短路小桥出现在焊丝和熔池之间。另一方面熔滴在轴向力的作用下,得到较均匀的短路过渡过程,短路峰值电流也不太高,有利于减少飞溅率。
在纯CO2气氛下,通常通过焊接电流波形控制法,降低短路初期电流以及短路小桥破断瞬间的电流,减少小桥电爆炸能量,达到降低飞溅的目的。
通过改进送丝系统,采用脉冲送丝代替常规的等速送丝,使熔滴在脉动送进的情况下与熔池发生短路,使短路过渡频率与脉动送丝的频率基本一致,每个短路周期的电参数的重复性好,短路峰值电流也均匀一致,其数值也不高,从而降低了飞溅。
如果在脉动送丝的基础上,再配合电流波形控制,其效果更佳。采用不同控制方法时,焊接飞溅率与焊接电流之间的关系。
2. 显示器上显示 信号线无连接
如果只是没显示,而电脑键盘灯可以按亮和按灭的话:
第一检查下你显卡连接显示器的数据线 先看有没插好或者松动!或者干脆换条数据线试下!
第二,也就是楼上说的主板跳线,也可以刷BIOS解决!
第三,有可能是显示器本身的问题,也就是说显示器坏了!
要是黑屏了,键盘灯也死掉,那涉及到的问题就太多了!
3. 分析多段桥整流电路的特点
摘要:介绍了集成电路铜互连双嵌入式工艺和电镀铜的原理;有机添加剂在电镀铜中的重要作用及对添加剂含量的监测技术;脉冲电镀和化学电镀在铜互连技术中的应用;以及铜互连电镀工艺的发展动态。
关键词:集成电路,铜互连,电镀,阻挡层
1.双嵌入式铜互连工艺
随着芯片集成度的不断提高,铜已经取代铝成为超大规模集成电路制造中的主流互连技术。作为铝的替代物,铜导线可以降低互连阻抗,降低功耗和成本,提高芯片的集成度、器件密度和时钟频率。
由于对铜的刻蚀非常困难,因此铜互连采用双嵌入式工艺,又称双大马士革工艺(Dual Damascene),如图1所示,1)首先沉积一层薄的氮化硅(Si3N4)作为扩散阻挡层和刻蚀终止层,2)接着在上面沉积一定厚度的氧化硅(SiO2),3)然后光刻出微通孔(Via),4)对通孔进行部分刻蚀,5)之后再光刻出沟槽(Trench),6)继续刻蚀出完整的通孔和沟槽,7)接着是溅射(PVD)扩散阻挡层(TaN/Ta)和铜种籽层(Seed Layer)。Ta的作用是增强与Cu的黏附性,种籽层是作为电镀时的导电层,8)之后就是铜互连线的电镀工艺,9)最后是退火和化学机械抛光(CMP),对铜镀层进行平坦化处理和清洗。
图1 铜互连双嵌入式工艺示意图
电镀是完成铜互连线的主要工艺。集成电路铜电镀工艺通常采用硫酸盐体系的电镀液,镀液由硫酸铜、硫酸和水组成,呈淡蓝色。当电源加在铜(阳极)和硅片(阴极)之间时,溶液中产生电流并形成电场。阳极的铜发生反应转化成铜离子和电子,同时阴极也发生反应,阴极附近的铜离子与电子结合形成镀在硅片表面的铜,铜离子在外加电场的作用下,由阳极向阴极定向移动并补充阴极附近的浓度损耗,如图2所示。电镀的主要目的是在硅片上沉积一层致密、无孔洞、无缝隙和其它缺陷、分布均匀的铜。
图2 集成电路电镀铜工艺示意图
2. 电镀铜工艺中有机添加剂的作用
由于铜电镀要求在厚度均匀的整个硅片镀层以及电流密度不均匀的微小局部区域(超填充区)能够同时传输差异很大的电流密度,再加上集成电路特征尺寸不断缩小,和沟槽深宽比增大,沟槽的填充效果和镀层质量很大程度上取决于电镀液的化学性能,有机添加剂是改善电镀液性能非常关键的因素,填充性能与添加剂的成份和浓度密切相关,关于添加剂的研究一直是电镀铜工艺的重点之一[1,2]。目前集成电路铜电镀的添加剂供应商有Enthone、Rohm&Haas等公司,其中Enthone公司的ViaForm系列添加剂目前应用较广泛。ViaForm系列包括三种有机添加剂:加速剂(Accelerator)、抑制剂(Suppressor)和平坦剂(Leverler)。当晶片被浸入电镀槽中时,添加剂立刻吸附在铜种籽层表面,如图3所示。沟槽内首先进行的是均匀性填充,填充反应动力学受抑制剂控制。接着,当加速剂达到临界浓度时,电镀开始从均匀性填充转变成由底部向上的填充。加速剂吸附在铜表面,降低电镀反应的电化学反应势,促进快速沉积反应。当沟槽填充过程完成后,表面吸附的平坦剂开始发挥作用,抑制铜的继续沉积,以减小表面的粗糙度。
加速剂通常是含有硫或及其官能团的有机物,例如聚二硫二丙烷磺酸钠(SPS),或3-巯基丙烷磺酸(MPSA)。加速剂分子量较小,一般吸附在铜表面和沟槽底部,降低电镀反应的电化学电位和阴极极化,从而使该部位沉积速率加快,实现沟槽的超填充。
抑制剂包括聚乙二醇(PEG)、聚丙烯二醇和聚乙二醇的共聚物,一般是长链聚合物。抑制剂的平均相对分子质量一般大于1000,有效性与相对分子质量有关,扩散系数低,溶解度较小,抑制剂的含量通常远大于加速剂和平坦剂。抑制剂一般大量吸附在沟槽的开口处,抑制这部分的铜沉积,防止出现空洞。在和氯离子的共同作用下,抑制剂通过扩散-淀积在阴极表面上形成一层连续抑制电流的单层膜,通过阻碍铜离子扩散来抑制铜的继续沉积。氯离子的存在,可以增强铜表面抑制剂的吸附作用,这样抑制剂在界面处的浓度就不依赖于它们的质量传输速率和向表面扩散的速率。氯离子在电镀液中的含量虽然只有几十ppm,但对铜的超填充过程非常重要。如果氯浓度过低,会使抑制剂的作用减弱;若氯浓度过高,则会与加速剂在吸附上过度竞争。平坦剂中一般含有氮原子,通常是含氮的高分子聚合物,粘度较大,因此会依赖质量运输,这样在深而窄的孔内与加速剂、抑制剂的吸附竞争中没有优势,但在平坦和突出的表面,质量传输更有效。沟槽填充完成后,加速剂并不停止工作,继续促进铜的沉积,但吸附了平坦剂的地方电流会受到明显抑制,可以抑制铜过度的沉积。平坦剂通过在较密的细线条上方抑制铜的过度沉积从而获得较好的平坦化效果,保证了较小尺寸的图形不会被提前填满,有效地降低了镀层表面起伏。
在铜电镀过程中,对填充过程产生影响的主要是加速剂、抑制剂和氯离子,填充过程完成后对镀层表面粗糙度产生影响的主要是平坦剂。铜电镀是有机添加剂共同作用的结果,它们之间彼此竞争又相互关联。为实现无空洞和无缺陷电镀,除了改进添加剂的单个性能外,还需要确定几种添加剂同时存在时各添加剂浓度的恰当值,使三者之间互相平衡,才能达到良好的综合性能,得到低电阻率、结构致密和表面粗糙度小的铜镀层。
尽管使用有机添加剂可实现深亚微米尺寸的铜电镀,但往往会有微量的添加剂被包埋在铜镀层中。对于镀层来说,这些杂质可能会提高电阻系数,并且使铜在退火时不太容易形成大金属颗粒。
图3 电镀铜表面添加剂作用示意图
A= Accelerator S= Suppressor
L= Leveler Cl= Chloride Ion
电镀过程中添加剂不断地被消耗,为了保证镀层的品质,需要随时监控添加剂的浓度。目前主要使用闭环的循环伏安剥离法(Cylic Voltammetric Stripping,CVS)来监测电镀液的有机添加剂含量。CVS测量仪器的主要供应商是美国ECI公司。CVS尽管硬件成本低,但它很难反映出几种添加剂组分浓度同时改变的准确情况,高效液相色谱(High Performance Liquid Chromatography,HPLC)分析技术有望能替代CVS。
3.脉冲电镀和化学镀
在铜互连中的应用
在目前的集成电路制造中,芯片的布线和互连几乎全部是采用直流电镀的方法获得铜镀层。但直流电镀只有电流/电压一个可变参数,而脉冲电镀则有电流/电压、脉宽、脉间三个主要可变参数,而且还可以改变脉冲信号的波形。相比之下,脉冲电镀对电镀过程有更强的控制能力。最近几年,关于脉冲电镀在集成电路铜互连线中的应用研究越来越受到重视[3,4]。
脉冲电镀铜所依据的电化学原理是利用脉冲张驰增加阴极的活化极化,降低阴极的浓差极化,从而改善镀层的物理化学性能。在直流电镀中,由于金属离子趋近阴极不断被沉积,因而不可避免地造成浓差极化。而脉冲电镀在电流导通时,接近阴极的金属离子被充分地沉积;当电流关断时,阴极周围的放电离子又重新恢复到初始浓度。这样阴极表面扩散层内的金属离子浓度就得到了及时补充,扩散层周期间隙式形成,从而减薄了扩散层的实际厚度。而且关断时间的存在不仅对阴极附近浓度恢复有好处,还会产生一些对沉积层有利的重结晶、吸脱附等现象。脉冲电镀的主要优点有:降低浓差极化,提高了阴极电流密度和电镀效率,减少氢脆和镀层孔隙;提高镀层纯度,改善镀层物理性能,获得致密的低电阻率金属沉积层。
除了电镀以外,还有一种无需外加电源的沉积方式,这就是化学镀。化学镀不同于电镀,它是利用氧化还原反应使金属离子被还原沉积在基板表面,其主要特点是不需要种籽层,能够在非导体表面沉积,具有设备简单、成本较低等优点。化学镀目前在集成电路铜互连技术中的应用主要有:沉积CoWP等扩散阻挡层和沉积铜种籽层。最近几年关于化学镀铜用于集成电路铜互连线以及沟槽填充的研究亦成为一大热点,有研究报道通过化学镀同样可以得到性能优良的铜镀层[5,6]。但是化学镀铜通常采用甲醛做为还原剂,存在环境污染的问题。
4.铜互连工艺发展趋势
使用原子层沉积(ALD ,Atomic Layer Deposition)技术沉积阻挡层和铜的无种籽层电镀是目前铜互连技术的研究热点[7]。
在当前的铜互连工艺中,扩散阻挡层和铜种籽层都是通过PVD工艺制作。但是当芯片的特征尺寸变为45nm或者更小时,扩散阻挡层和铜种籽层的等比例缩小将面临严重困难。首先,种子层必须足够薄,这样才可以避免在高纵宽比结构上沉积铜时出现顶部外悬结构,防止产生空洞;但是它又不能太薄。其次,扩散层如果减薄到一定厚度,将失去对铜扩散的有效阻挡能力。还有,相对于铜导线,阻挡层横截面积占整个导线横截面积的比例变得越来越大。但实际上只有铜才是真正的导体。例如,在65nm工艺时,铜导线的宽度和高度分别为90nm和150nm,两侧则分别为10nm。这意味着横截面为13,500 nm2的导线中实际上只有8,400 nm2用于导电,效率仅为62.2%[7]。
目前最有可能解决以上问题的方法是ALD和无种籽电镀。使用ALD技术能够在高深宽比结构薄膜沉积时具有100%台阶覆盖率,对沉积薄膜成份和厚度具有出色的控制能力,能获得纯度很高质量很好的薄膜。而且,有研究表明:与PVD阻挡层相比,ALD阻挡层可以降低导线电阻[7]。因此ALD技术很有望会取代PVD技术用于沉积阻挡层。不过ALD目前的缺点是硬件成本高,沉积速度慢,生产效率低。
此外,过渡金属-钌可以实现铜的无种籽电镀,在钌上电镀铜和普通的铜电镀工艺兼容。钌的电阻率(~7 μΩ-cm),熔点(~2300℃),即使900℃下也不与铜发生互熔。钌是贵金属,不容易被氧化,但即使被氧化了,生成的氧化钌也是导体。由于钌对铜有一定的阻挡作用,在一定程度上起到阻挡层的作用,因此钌不仅有可能取代扩散阻挡层常用的Ta/TaN两步工艺,而且还可能同时取代电镀种籽层,至少也可以达到减薄阻挡层厚度的目的。况且,使用ALD技术沉积的钌薄膜具有更高的质量和更低的电阻率。但无种籽层电镀同时也为铜电镀工艺带来新的挑战,钌和铜在结构上的差异,使得钌上电镀铜与铜电镀并不等同,在界面生长,沉积模式上还有许多待研究的问题。
5.结语
铜互连是目前超大规模集成电路中的主流互连技术,而电镀铜是铜互连中的关键工艺之一。有机添加剂是铜电镀工艺中的关键因素,各种有机添加剂相互协同作用但又彼此竞争,恰当的添加剂浓度能保证良好的电镀性能。在45nm或更小特征尺寸技术代下,为得到低电阻率、无孔洞和缺陷的致密铜镀层,ALD和无种籽电镀被认为是目前最有可能的解决办法。此外,研究开发性能更高的有机添加剂也是途径之一,而使用新的电镀方式(比如脉冲电镀)也可能提高铜镀层的质量。
参考文献
[1]Tantavichet N, Pritzker M.Effect of plating mode, thiourea and chloride on the morphology of copper deposits proced in acidic sulphate solutions [J]. Electrochimica Acta, 2005, 50: 1849-1861
[2]Mohan S, Raj V. The effect of additives on the pulsed electrodeposition of copper [J]. Transactions of the Institute of Metal Finishing, 2005, 83(4): 194-198
[3]Y. Lee, Y.-S. Jo, Y. Roh. Formation of nanometer-scale gaps between metallic electrodes using pulse/DC plating and photolithography [J]. Materials Science and Engineering C23 (2003): 833-839
[4]Song Tao, D Y Li.Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits proced by pulse electrodeposition [J]. Nanotechnology 17 (2006) 65–78
[5]王增林,刘志鹃,姜洪艳等. 化学镀技术在超大规模集成电路互连线制造过程的应用 [J]. 电化学, Vol.12 No.2 May 2006 :125-133
[6]Rajendra K. Aithal, S. Yenamandra and R.A. Gunasekaran, etc. Electroless copper deposition on silicon with titanium seed layer [J]. Materials Chemistry and Physics 98 (2006) 95–102
[7]45nm铜工艺面临的挑战. Peter Singer, Semiconctor International [J]. Jul. 2004
4. 液晶显示器的电源板坏了,自己换可以吗
可以换,但是需要考虑的地方有很多,拆前最好拍照一下,做好记录,便于安装是对照。
要看驱动的屏是多大尺寸的,屏尺寸不一样,灯管的参数不一样,所要求的高压板供电电压也不一样。功率足够的话,高压板供电如果是12v,小尺寸的屏(26寸以下)也许可以。26寸以上的屏,高压供电大部分是24v的,灯管数量从十几根到三十多根不等。
考虑到节能的需要,现在的液晶电视正常工作时和待机时功率相差很大,电源电路都设计了主动式pfc校正电路。电源有主电源部分和副电源(待机电源)部分。电视待机时主电源不工作,待机电源只要一通电是一直工作的。主电源是否工作是受控于驱动板开机电路的。
大尺寸液晶电视工作时不仅需要12v,24v,有的还需要18v(音频电路)和其他电压,电源功率要求100w以上,普通的液晶显示器电源板功率达不到这个要求。而且液晶电视的电源部分一般都用到多颗芯片。有的电路结构也不是普通的开关电源,而是它激式的半桥电路。
液晶显示器的电源板更换注意事项:
1,当按“待机”键后, CPU输出开机电平,PFC 电路先工作,将+300V脉动直流电压转换成正常的直流电压后,这时主开关电源的脉宽振荡器才开始工作,接着主开关变压器次级输出+12V、+24V电压,整机进入正常工作状态。
2,主开关电压+24V或+12 V的输出电流较大,对整流二极管要求较高,一般采用低压差的大功率肖特基二极管,不能用普通的整流二极管替换。另外接负载后,电压反而上升,多属于电源滤波不好引起。
3、检修液晶电源时,首先确认保险管状态,保险管完好,通常PFC校正电路中的开关管等没有失效。再测量大电解电容对地是否存在短路,有几十千欧以上充电电阻,表明电源没有击穿。如果保险管损坏,第一个要检查PFC校正电路开关管,第二个要检查副电源IC 。
4、40英寸以下的一般输出+5V、+12V、+24V三组电压;40英寸以上的一般输出+5V、+12V、+18V、+24 V四组电压。其中+5 V为待机电压,+12V供数字板,+18V供伴音,+24 V供背光板。在实践维修中,只要各组电压一样、功率一样的电源板都可以代换。
5、电源板可以从电视上摘下独立维修,维修时只需要把开关机控制电路三极管C、E短接(或将一只1.5K左右的电阻与副电源的+5V输出端相连),整机就处于开机状态,各路电压均有输出。
5. 原电池中 盐桥的作用是什么 不用盐桥可以吗
可以不用。
盐桥的作用就是起着平衡电池的阴阳离子的,不加盐桥的,随着反应的进行,正负级分别积累了阳离子和阴离子,这样的电池内电路的电流和外电路的电流相互矛盾,使得反应无法继续下去,而有盐桥的,其中的盐桥就是起着中和原电池的离子的。
盐桥是为了减小液接电位,转移离子而在两种溶液之间连接的高浓度电解质溶液。盐桥常出现在原电池中,是由琼脂和饱和氯化钾或饱和硝酸钾溶液构成的。
(5)液桥电路扩展阅读:
在两种溶液之间插入盐桥以代替原来的两种溶液的直接接触,减免和稳定液接电位(当组成或活度不同的两种电解质接触时,在溶液接界处由于正负离子扩散通过界面的离子迁移速度不同造成正负电荷分离而形成双电层。
这样产生的电位差称为液体接界扩散电位,简称液接电位),使液接电位减至最小以致接近消除。防止试液中的有害离子扩散到参比电极的内盐桥溶液中影响其电极电位。选择盐桥中的电解质的原则是高浓度、正负离子迁移速率接近相等,且不与电池中溶液发生化学反应。
6. 怎样检测尿素喷嘴故障
首先,尿素喷嘴测试需要在确保尿素压力测试无问题的前提下进行。如果压力测试不正常,必须先处理完才能开始尿素喷嘴测试。
检查压力测试正常后,输入尿素泵开度40,尿素喷嘴开度50,点击“尿素喷嘴测试”即可进行喷嘴雾化测试。
正常情况下,点击测试开始后,尿素压力会缓慢上升,最后稳定在9000hPa 左右(不同车辆整车布置可能会有所波动,波动范围大约在8000~12000hPa)。
测试说明:尿素喷嘴测试必须通过听声音,观察尿素雾化情况来判断尿素喷嘴是否损坏
尿素喷嘴测试时:在喷嘴附近能够听到比较清晰的电磁阀开启的声音(阀按照频率1HZ动作开启)。
如果没有听到声音,请确认ECU程序是否为最新程序,尿素压力有没有到达13000hPa,线束是否连接正常。
如果能一直听到阀开启的声音,但没有尿素喷出,尿素压力已经到了9000hPa,说明尿素喷嘴被堵塞。相反,如果在进行压力测试的时候,就看到有尿素从喷嘴出来,也说明喷嘴阀损坏。
正常的尿素喷嘴工作时:当尿素压力到达9000hPa时,应该是看到雾化非常好的锥形雾粒,如果出现液滴状尿素溶液,也是喷嘴损坏的一种情况。
有时候因为管路中有尿素结晶,可能导致前几次测试效果不佳,可以多尝试几次,一般3-5次后即可恢复。
很多喷嘴堵塞是可以通过热水泡开的(注意电器部分不要进水)。如是尿素喷嘴管接头损坏造成的堵塞,应更换管接头处理。
7. 在零电压转换pwm电路中,辅助开关s1和二极管vd1是软开关还是硬开关,为什么
精工电源科技深圳有限: 曾宪明: 概述:1 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数设
计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为任何
方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源产品可
靠性设计的重要性。
2 开关电源电气可靠性设计
2.1 供电方式的选择
集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电质量,
而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因供电单元
靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能源,可靠性
高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。所以采用分布式供电系统可以
满足高可靠性设备的要求。
2.2 电路拓扑的选择
开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽
式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式的开关管的
承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型。在推挽和全桥拓扑
中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平衡能力,所以就
不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大输入电压,即使按
60%降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这两类电路拓扑。
2.3 控制策略的选择
在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优点:逐
周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与短路的保
护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压控制型小得
多。生产实践表明电流控制型的50W开关电源的输出纹波在25m左右,远优于电压控制
型。
硬开关技术因开关损耗的限制,开关频率一般在kHz以下,软开关技术是应用谐振原理,
使开关器件在零电压或零电流状态下通断,实现开关损耗为零,从而可将开关频率提高到兆
赫级水平,这种应用软开关技术的变换器综合了PWM变换器和谐振变换器两者的优点,接近
理想的特性,如低开关损耗、恒频控制、合适的储能元件尺寸、较宽的控制范围及负载范
围,但是此项技术主要应用于大功率电源,中小功率电源中仍以PWM技术为主。
2.4 元器件的选用
因为元器件直接决定了电源的可靠性,所以元器件的选用非常重要。元器件的失效主要
集中在以下四个方面:
(1)质量问题
质量问题造成的失效与工作应力无关。质量不合格的可以通过严格的检验加以剔除,在
工程应用时应选用定点生产厂家的成熟产品,不允许使用没有经过认证的产品。
(2)元器件可靠性问题
元器件可靠性问题即基本失效率的问题,这是一种随机性质的失效,与质量问题的区别
是元器件的失效率取决于工作应力水平。在一定的应力水平下,元器件的失效率会大大下
降。为剔除不符合使用要求的元器件,包括电参数不合格、密封性能不合格、外观不合格、
稳定性差、早期失效等,应进行筛选试验,这是一种非破坏性试验。通过筛选可使元器件失
效率降低1~2个数量级,当然筛选试验代价(时间与费用)很大,但综合维修、后勤保障、整
架联试等还是合算的,研制周期也不会延长。电源设备主要元器件的筛选试验一般要求:
①电阻在室温下按技术条件进行%测试,剔除不合格品。
②普通电容器在室温下按技术条件进行%测试,剔除不合格品。
③接插件按技术条件抽样检测各种参数。
④半导体器件按以下程序进行筛选:
目检→初测→高温贮存→高低温冲击→电功率老化→高温测试→低温测试→常温测试
筛选结束后应计算剔除率
=(n / N)×%
式中:N——受试样品总数;
n——被剔除的样品数;
如果超过标准规定的上限值,则本批元器件全部不准上机,并按有关规定处理。
在符合标准规定时,则将筛选合格的元器件打漆点标注,然后入专用库供装机使
用。
(3)设计问题
首先是恰当地选用合适的元器件: ①尽量选用硅半导体器件,少用或不用锗半导体器件。
②多采用集成电路,减少分立器件的数目。
③开关管选用MOSFET能简化驱动电路,减少损耗。
④输出整流管尽量采用具有软恢复特性的二极管。
⑤应选择金属封装、陶瓷封装、玻璃封装的器件。禁止选用塑料封装的器件。
⑥集成电路必须是一类品或者是符合MIL-M-、MIL-S-标准B-1以上质量
等级的军品。
⑦设计时尽量少用继电器,确有必要时应选用接触良好的密封继电器。
⑧原则上不选用电位器,必须保留的应进行固封处理。
⑨吸收电容器与开关管和输出整流管的距离应当很近,因流过高频电流,故易升温,所
以要求这些电容器具有高频低损耗和耐高温的特性。
在潮湿和盐雾环境下,铝电解电容会发生外壳腐蚀、容量漂移、漏电流增大等情况,所以在
舰船和潮湿环境,最好不要用铝电解电容。由于受空间粒子轰击时,电解质会分解,所以铝
电解电容也不适用于电子设备的电源中。
钽电解电容温度和频率特性较好,耐高低温,储存时间长,性能稳定可靠,但钽电解电容较
重、容积比低、不耐反压、高压品种(>)较少、价格昂贵。
关于降额设计:
电子元器件的基本失效率取决于工作应力(包括电、温度、振动、冲击、频率、速度、碰撞
等)。除个别低应力失效的元器件外,其它均表现为工作应力越高,失效率越高的特性。为
了使元器件的失效率降低,所以在电路设计时要进行降额设计。降额程度,除可靠性外还需
考虑体积、重量、成本等因素。不同的元器件降额标准亦不同,实践表明,大部分电子元器
件的基本失效率取决于电应力和温度,因而降额也主要是控制这两种应力,以下为开关
电源常用元器件的降额系数:
①电阻的功率降额系数在0.1~0.5之间。
②二极管的功率降额系数在0.4以下,反向耐压在0.5以下。
③发光二极管
(2)首先了现代开关电源的优缺点及其发展状况,在传统开关电源的基础上设计了一种新型的带全面检测和保护功能的开关电源,该电源输入带雷电浪涌保护,并配有RS-通讯接口,可实现与上位通讯。 1、概述 随着电子技术和电源技术的发展,开关电源以体积小、重量轻、功率密度大、集成度高、输出组合便利等优点而成为电子电路电源的首选。在实际的工作环境中,特别是在一些工业场所中,电磁环境十分恶劣,常常有异常情况出现,例如过电压、瞬态脉冲冲击波、强电磁辐射等。这些都有可能击毁电源。影响整个系统的工作。通过设计以微处理机为核心的具有全面电源检测技术辅以提高开关电源抗过电压、抗干扰性能力的手段,设计了一种具有保护和监控功能的开关电源。 2、设计思想 随着电子设备对电源系统要求的日益提高,研究廉价的具有监视'管理供电电源功能的开关电源愈来愈显得必要。通过综合考虑电源各种技术性能和对自身的安全要求以及开关电源性能的基础上,设计出了一种新型实用的带有过电压检测和保护装置的智能化源。它具有以下几个特点:(1)实现了对过电压的检测,并能记录每次过电压的瞬时值和峰值。可启动备用电源供电。实现对电子电路的保护作用。(2)具有抗冲击能力强、使用寿命长、带液晶屏数字监视的特点。 同时通过RS-通信接口与管理计算机通讯能实现电源的工作和保护等功能的透明化。(3)能实时显示输出电压、电流的大小、过电压的次数、大小以及必要的参数设置信息。(4)通过接口与后台或远端PC机实现数据传送。智能化电源的核心由显示板、CPU板、通信板、备用电源板、过电压检测板、键盘、通信转接板组成。装置的关键是实现电压的峰值检测,尤其是过电压的检测。该开关电源使用了一种基于单片机的过电压检测和峰值电压检测方法,实验证明它满足了对检测的快速性和精确性的要求。 3、系统硬件设计 3.1 原理框图 系统硬件框架如图1所示。在正常的情况下的交流输入电压经过整流、滤波、DC/DC.变换、限流稳压电路后可得到一个稳定的输出电压。是一个普通开关电源。当有过电压时,过电压经过过电压检测电路检测和峰值电压保持电路保持,控制电源回路,断开正常工作的交流电路,同时通过计算机启动备用电源工作,以及完成对过电压的瞬时值和峰值的测量。 3.2 PWM控制电路 系统采用的PWM调制器为SG型[4]的芯片,电路如图2所示。在芯片的电源入口端并联一电容C2构成一个软启动电路。设计软启动电路的目的是防止在电源突然开通时产生的过大电流对芯片造成冲击。在刚通电时,电容两端电压不能突变,它的电压随外部电源对其充电而逐渐升高,经过一段时间后,电路进入正常工作状态。这样保证了输入电压缓慢地建立起来,确保芯片不受损坏。输出电路的开关功率管选用MOS功率管。由于功率管是在高频状态下工作会产生振荡。为了消除这种寄生振荡,应尽量减少与功率管各管脚的连线长度,特别是栅极引线的长度。若无法减少其长度,可以串联小电阻,且尽量靠近管子栅极。图中R3既是功率管的栅极限流电阻,又与R4一起消除功率管工作时产生的寄生振荡。 3.3变压器驱动电路 变压器驱动电路见图3。驱动电路采用单端驱动工作方式,这种电路简单、工作可靠性高。功率管由来自SG芯片的驱动。11、14脚的单端并联输出。当SG输出高电平时,功率管导通,在电感L中储能;输出低电平时,功率管截止,导致流过电感L上的电流突然下降为零,L产生反电势。该反电势的脉冲电压加在高频变压器的输入端,驱动变压器工作。同时,电感L作变压器的阻抗匹配元件。 由高频变压器输出的交流电压经二极管D2、D3进行整流倍压后,再经C2滤波,得到高压输出。 3.4采样反馈电路 反馈回路中,对输出电压的取样,采用在输出端并联电阻,再将高压经电阻串联衰减的方法实现。 R3、R4、RW为电压取样反馈电阻。电压经隔离反馈后,从SG芯片的1脚输入,控制占空比,进而调节输出电压,达到稳压的目的。其稳压原理是:若输出电压偏高,采样反馈的也偏高,与SG中误差放大器的基准电压比较后的电压偏低,导致占空比的宽度变窄,引起输出电压下降;反之亦然。RW是可调电阻,通过调节RW来调节输出电压。 3.5 过电压检测电路 过电压对于电源来说是一个非常有害的。雷电等引起的瞬时高电压如果不加遏制,直接由电源引入RTU(远程终端设备)则会影响其电源模块的正常工作,各功能模块的工作电压升高而工作不正常,严重时会损坏模块,烧坏元器件IC。 过电压保护的基本原理是在瞬态过电压发生的时侯(微秒或纳秒级),通过过电压检测电路对这个进行检测。过电压检测电路中主要的元件是压敏电阻,压敏电阻相当于很多串并联在一起的双向抑制二极管。电压超过箝位电压时,压敏电阻导通;电压低于箝位电压时,压敏电阻截止。这就是压敏电阻的电压箝位作用。压敏电阻工作极为迅速,响应时间在纳秒级。 过电压检测电路原理图如图(4)所示,当有过电压产生时,压敏电阻被击穿,呈现低阻值甚至接近短路状态,这样在电流互感器的原级产生一个大电流,通过线圈互感作用在副级产生一个小电流,再通过精密电阻把电流转变为电压。这个输入到电压比较器LM后,电压比较器LM输出高电平,经过非门A 输出的控制脉冲1控制电源回路,断开开关电源电路,启动备用电源。控制脉冲2送到单片机的中断口,单片机控制回路启动A/D转换,采样过电压的瞬时值。 3.6 峰值电压采样保持电路 峰值电压采样保持电路如图(5) 所示。峰值电压采样保持电路由一片采样保持器芯片LF 和一块电压比较器LM构成。LF的输出电压和输入电压通过LM进行比较,当i>o时LM输出高电平,送到LF的逻辑控制端8 脚,使LF 处于采样状态。我也只能和你说到这里,不知道能帮助到你没。
硬之城有这个型号的 可以去看看有这方面的资料么
8. 燃料电池并网发电和光伏并网发电所用的逆变器一个原理吗
1.1光伏并网发电系统的基本原理
光伏并网逆变器系统是将太阳能光伏阵列发出的直流电转化为与公共电网电压同频同相的交流电,因此该系统是既能满足本地负载用电又能向公共电网送电。一般情况下,公共电网系统可看作是容量为无穷大的交流电压源。当太阳能光伏发电并网系统中太阳能光伏阵列的发电量小于本地负载用电量时,本地负载电力不足部分由公共电网输送供给;当光伏电池阵列的发电量大于本地负载用电量时,太阳能光伏系统将多余的电能输送给公共电网,实现并网发电
1.2光伏并网发电系统的组成
太阳能光伏发电并网系统组成如图所示,该系统一般由太阳能电池光伏阵列、MPPT控制、DC/DC变换器、驱动电路以及控制器组成,其中变换器可将太阳能光伏阵列发出的直流电逆变成正弦交流电并入公共电网。控制器主要控制逆变器并网电流的波形、功率以及光伏电池最大功率点的跟踪,以便向电网传送的功率与太阳能光伏电池阵列所发的最大功率电能相匹配。
1.3光伏并网发电系统的控制方式
如果光伏并网逆变器的输出采用电压控制,则相当于是电压源与电压源并联运行;如果光伏并网逆变器的输出采用电流控制,就相当于电流源与电压源并联运行。逆变器采用电流控制时,只需控制逆变器的输出电流跟踪电网电压,控制输出电流与电网电压同频同相,这样系统的功率因数为1。目前,光伏并网逆变器一般都采用电压源输入、电流源输出的控制方式。
太阳能光伏发电并网系统的逆变器通常采用电流控制模式,这样整个系统系统实际上就是一个电压源和电流源并联的系统。逆变器并网运行的主要控制目标是要保证逆变器输出电流与公共电网电压同频同相,并且还能实时跟踪电网电压实现最大功率跟踪控制。通过采用锁相控制技术实现太阳能光伏发电并网系统输出的并网电流与公共电网电压相位同步,保证系统输出的功率因数为1。光伏并网逆变器运行时还要控制并网电流的总畸变失真要低,以减小对电网的谐波影响,使并网系统的有功功率输出达到最大。
1.4光伏并网发电系统的分类
光伏并网发电系统可以按照系统功能分为两类:一种为不含蓄电池环节的不可调度式光伏并网发电系统;另一种为含有蓄电池组的可调度式光伏并网发电系统。系统结构图如1.1所示
可调度式光伏并网发电系统增加了储能环节,系统首先对蓄电池进行充电,然后根据需要将系统用作并网或者经逆变后独立使用,系统工作时间和并网功率大小可以人为设定。可调度式并网系统虽然在表面上看来比不可调度式系统功能齐全,但由于增加了储能环节,带来了很多严重的问题,这是因为:
(1)由于采用蓄电池作为储能设备,系统必须增加蓄电池的充电装置,这就增加了成本并且降低了系统的可靠性。
(2)蓄电池组的寿命较短。目前免维修蓄电池在良好环境下的工作寿命通常为5年,而光伏阵列稳定工作的寿命则在25~30年之问,这样就需要定期更换蓄电池组,又增加了许多系统的投入。
(3)蓄电池组较为笨重,需要占用较大空间,同时要防止泄露出腐蚀性液体,另外报废的蓄电池组要专门处理,否则会造成污染。
基于上述原因,目前的光伏并网系统主要以不可调度式系统为主。不可调度式光伏并网发电系统的集成度高,其安装和调试相对方便,可靠性也高。