导航:首页 > 电器电路 > 门开关电路

门开关电路

发布时间:2022-04-16 17:35:08

『壹』 在典型的门开关控制电路中D1D2作用

d1,d2是续流二极管,吸收继电器断开时的反向电动势形成的尖峰脉冲,保证三极管和电路安全,降低干扰。

『贰』 门电路开关问题

开关的话,用门电路就可能比较郁闷一点,一般选用三极管,或者光耦,光耦救济蹦上没有压降,可以忽视,也是一个高电平就可以控制两个角的导通。

『叁』 汽车电动门窗开关电路接线图(越具体越好)

汽车电动门窗开关电路接线图:

电动车窗系统由车窗、车窗玻璃升降器、电动机、继电器、开关和ECU等装置组成。

其中,玻璃升降器系统是电动车窗的主要部件,根据机械升降机构的不同工作原理,玻璃升降器可分为3种形式:绳轮式、叉臂式和软轴式。

(3)门开关电路扩展阅读:

电动车窗的控制电路主要由电源、易熔线、断路器、主继电器、开关、电动机和指示灯组成。

1、电源

电源为电气设备提供电能,以使电气设备工作。汽车的电源主要是发电机和蓄电池。

2、易熔线

易熔线的作用是防止电流过大而损坏电气设备。

3、断路器

电路或电动机内装有一个或多个热敏断路器,用以控制电流,防止电动机过载。当车窗完全关闭或由于结冰等原因使车窗玻璃不能自如运动时,即使操纵开关没有断开,热敏开关也会自动断路。

其基本原理是:当电动机过载时,其阻抗减小甚至为零,此时输入的电流过大,引起断路器的双金属片发热变形而断路。当开关断开后,其电路中的电流为零,断路器的双金属片因无电流通过,便逐渐冷却触点又恢复接触状态,以备再次接通门窗的电路。

4、主继电器

主继电器的作用是接通或断开门窗电路。当接通点火开关电路时,同时也接通了主继电器的线圈电路,主继电器接通门窗的电路。当关断点火开关时,主继电器同时也断开门窗的电路,以防损坏电气组件和发生意外。

5、开关

开关用来控制门窗玻璃升降。一般电动门窗系统都装有两套控制开关。一套装在仪表板或驾驶员侧车门扶手上(即方便于驾驶员操纵位置),为主开关,它由驾驶员控制每个车窗的升降。另一套分别装在每一个乘员的车门上,它为分开关,可由乘员操纵。

一般在主开关上还装有窗锁开关。如果将其断开,则分开关就不起作用。有的车上还专门装有一个延迟开关,在点火开关断开后约10min内,或在打开车门以前,仍有电源提供,使驾驶员和乘员能有时间关闭车窗。

6、指示灯

指示灯用来指示门窗电路的工作状态。它主要有电源指示灯、乘员门窗电路指示灯和驾驶员侧门窗升降状态指示灯几种。

电源指示灯的点亮或熄灭表示电源电路的通断。即门窗电路导通时,电源指示灯点亮,电源断开时指示灯熄灭。当接通窗锁开关时,乘员门窗电路指示灯点亮,断开时熄灭。

『肆』 大众宝来主门开关电路

j519

『伍』 电动卷帘门开关接线图是怎样的

如下图:

第二、从电动卷帘门专用电机种类划分:卷帘门专用电机有:防火卷门机、澳式卷门机、外挂卷门机、管状卷门机、无机双帘卷门机、快速卷门机等。采用不同专用电机的电动卷帘门都各有各的特点,那要看客户的需求而定。

第三、电动卷帘门用途也分很多种:按照每个使用者的不同用途,有静音型、降噪型、有不锈钢卷帘门、还有防风、防火卷帘门和水晶卷帘门。

『陆』 门控制开关电路

不用电路,门框顶部安装一个干簧管,串接在220V线路上,在门顶部与干簧管对应位置安装回一块小磁铁答即可。门闭合时,磁铁靠近干簧管,使干簧管闭合,电路接通,门打开时,磁铁离开干簧管,干簧管复位,电路断开。
这种方法很好,只是干簧管控制的负载不能太大,100W以内应该没问题,功率大了,可以用两个或几个干簧管并联,或采用其它方法控制。

『柒』 请问电磁门开关的工作原理是什么

当按下板式开关时,电磁门的电磁铁开始作用,使衔铁脱离门扣,就可以用手打开门;门关上后,电磁铁不通电,衔铁卡住门扣,使门不能被打开。

一般电磁门都这样设计,毕竟关门的时间长,此时应尽量不让电磁铁通电。电磁铁不通电,就没有磁性。没有见过通电就使磁性消失的电磁门。

『捌』 门电路工作原理

第五节 CMOS逻辑门电路
http://www.fjtu.com.cn/fjnu/courseware/0321/course/_source/web/lesson/char2/j6.htm 看看把

CMOS逻辑门电路是在TTL电路问世之后 ,所开发出的第二种广泛应用的数字集成器件,从发展趋势来看,由于制造工艺的改进,CMOS电路的性能有可能超越TTL而成为占主导地位的逻辑器件 。CMOS电路的工作速度可与TTL相比较,而它的功耗和抗干扰能力则远优于TTL。此外,几乎所有的超大规模存储器件 ,以及PLD器件都采用CMOS艺制造,且费用较低。
早期生产的CMOS门电路为4000系列 ,随后发展为4000B系列。当前与TTL兼容的CMO器件如74HCT系列等可与TTL器件交换使用。下面首先讨论CMOS反相器,然后介绍其他CMO逻辑门电路。

MOS管结构图

MOS管主要参数:

1.开启电压VT
·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;
·标准的N沟道MOS管,VT约为3~6V;
·通过工艺上的改进,可以使MOS管的VT值降到2~3V。

2. 直流输入电阻RGS
·即在栅源极之间加的电压与栅极电流之比
·这一特性有时以流过栅极的栅流表示
·MOS管的RGS可以很容易地超过1010Ω。

3. 漏源击穿电压BVDS
·在VGS=0(增强型)的条件下 ,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS
·ID剧增的原因有下列两个方面:
(1)漏极附近耗尽层的雪崩击穿
(2)漏源极间的穿通击穿
·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后
,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID

4. 栅源击穿电压BVGS
·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。

5. 低频跨导gm
·在VDS为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导
·gm反映了栅源电压对漏极电流的控制能力
·是表征MOS管放大能力的一个重要参数
·一般在十分之几至几mA/V的范围内

6. 导通电阻RON
·导通电阻RON说明了VDS对ID的影响 ,是漏极特性某一点切线的斜率的倒数
·在饱和区,ID几乎不随VDS改变,RON的数值很大 ,一般在几十千欧到几百千欧之间
·由于在数字电路中 ,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似
·对一般的MOS管而言,RON的数值在几百欧以内

7. 极间电容
·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS
·CGS和CGD约为1~3pF
·CDS约在0.1~1pF之间

8. 低频噪声系数NF
·噪声是由管子内部载流子运动的不规则性所引起的
·由于它的存在,就使一个放大器即便在没有信号输人时,在输 出端也出现不规则的电压或电流变化
·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)
·这个数值越小,代表管子所产生的噪声越小
·低频噪声系数是在低频范围内测出的噪声系数
·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小

一、CMOS反相器

由本书模拟部分已知,MOSFET有P沟道和N沟道两种,每种中又有耗尽型和增强型两类。由N沟道和P沟道两种MOSFET组成的电路称为互补MOS或CMOS电路。
下图表示CMOS反相器电路,由两只增强型MOSFET组成,其中一个为N沟道结构,另一个为P沟道结构。为了电路能正常工作,要求电源电压VDD大于两个管子的开启电压的绝对值之和,即
VDD>(VTN+|VTP|) 。

1.工作原理

首先考虑两种极限情况:当vI处于逻辑0时 ,相应的电压近似为0V;而当vI处于逻辑1时,相应的电压近似为VDD。假设在两种情况下N沟道管 TN为工作管P沟道管TP为负载管。但是,由于电路是互补对称的,这种假设可以是任意的,相反的情况亦将导致相同的结果。
下图分析了当vI=VDD时的工作情况。在TN的输出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,叠加一条负载线,它是负载管TP在 vSGP=0V时的输出特性iD-vSD。由于vSGP<VT(VTN=|VTP|=VT),负载曲线几乎是一条与横轴重合的水平线。两条曲线的交点即工作点。显然,这时的输出电压vOL≈0V(典型值<10mV ,而通过两管的电流接近于零。这就是说,电路的功耗很小(微瓦量级)

下图分析了另一种极限情况,此时对应于vI=0V。此时工作管TN在vGSN=0的情况下运用,其输出特性iD-vDS几乎与横轴重合 ,负载曲线是负载管TP在vsGP=VDD时的输出特性iD-vDS。由图可知,工作点决定了VO=VOH≈VDD;通过两器件的电流接近零值 。可见上述两种极限情况下的功耗都很低。

由此可知,基本CMOS反相器近似于一理想的逻辑单元,其输出电压接近于零或+VDD,而功耗几乎为零。

2.传输特性

下图为CMOS反相器的传输特性图。图中VDD=10V,VTN=|VTP|=VT=
2V。由于 VDD>(VTN+|VTP|),因此,当VDD-|VTP|>vI>VTN 时,TN和TP两管同时导通。考虑到电路是互补对称的,一器件可将另一器件视为它的漏极负载。还应注意到,器件在放大区(饱和区)呈现恒流特性,两器件之一可当作高阻值的负载。因此,在过渡区域,传输特性变化比较急剧。两管在VI=VDD/2处转换状态。

3.工作速度

CMOS反相器在电容负载情况下,它的开通时间与关闭时间是相等的,这是因为电路具有互补对称的性质。下图表示当vI=0V时 ,TN截止,TP导通,由VDD通过TP向负载电容CL充电的情况。由于CMOS反相器中,两管的gm值均设计得较大,其导通电阻较小,充电回路的时间常数较小。类似地,亦可分析电容CL的放电过程。CMOS反相器的平均传输延迟时间约为10ns。

二、CMOS门电路

1.与非门电路

下图是2输入端CMOS与非门电路,其中包括两个串联的N沟道增强型MOS管和两个并联的P沟道增强型MOS管。每个输入端连到一个N沟道和一个P沟道MOS管的栅极。当输入端A、B中只要有一个为低电平时,就会使与它相连的NMOS管截止,与它相连的PMOS管导通,输出为高电平;仅当A、B全为高电平时,才会使两个串联的NMOS管都导通,使两个并联的PMOS管都截止,输出为低电平。

因此,这种电路具有与非的逻辑功能,即
n个输入端的与非门必须有n个NMOS管串联和n个PMOS管并联。

2.或非门电路

下图是2输入端CMOS或非门电路。其中包括两个并联的N沟道增强型MOS管和两个串联的P沟道增强型MOS管。

当输入端A、B中只要有一个为高电平时,就会使与它相连的NMOS管导通,与它相连的PMOS管截止,输出为低电平;仅当A、B全为低电平时,两个并联NMOS管都截止,两个串联的PMOS管都导通,输出为高电平。
因此,这种电路具有或非的逻辑功能,其逻辑表达式为

显然,n个输入端的或非门必须有n个NMOS管并联和n个PMOS管并联。
比较CMOS与非门和或非门可知,与非门的工作管是彼此串联的,其输出电压随管子个数的增加而增加;或非门则相反,工作管彼此并联,对输出电压不致有明显的影响。因而或非门用得较多。

3.异或门电路

上图为CMOS异或门电路。它由一级或非门和一级与或非门组成。或非门的输出。而与或非门的输出L即为输入A、B的异或

如在异或门的后面增加一级反相器就构成异或非门,由于具有的功能,因而称为同或门。异成门和同或门的逻辑符号如下图所示。

三、BiCMOS门电路

双极型CMOS或BiCMOS的特点在于,利用了双极型器件的速度快和MOSFET的功耗低两方面的优势,因而这种逻辑门电路受到用户的重视


1.BiCMOS反相器

上图表示基本的BiCMOS反相器电路,为了清楚起见,MOSFET用符号M表示BJT用T表示。T1和T2构成推拉式输出级。而Mp、MN、M1、M2所组成的输入级与基本的CMOS反相器很相似。输入信号vI同时作用于MP和MN的栅极。当vI为高电压时MN导通而MP截止;而当vI为低电压时,情况则相反,Mp导通,MN截止。当输出端接有同类BiCMOS门电路时,输出级能提供足够大的电流为电容性负载充电。同理,已充电的电容负载也能迅速地通过T2放电。
上述电路中T1和T2的基区存储电荷亦可通过M1和M2释放,以加快
电路的开关速度。当vI为高电压时M1导通,T1基区的存储电荷迅速消散。这种作用与TTL门电路的输入级中T1类似。同理 ,当vI为低电压时,电源电压VDD通过MP以激励M2使M2导通,显然T2基区的存储电荷通过M2而消散。可见,门电路的开关速度可得到改善。

2.BiCMOS门电路

根据前述的CMOS门电路的结构和工作原理,同样可以用BiCMOS技术实现或非门和与非门。如果要实现或非逻辑关系,输入信号用来驱动并联的N沟道MOSFET,而P沟道MOSFET则彼此串联。正如下图所示的
2输入端或非门。

当A和B均为低电平时,则两个MOSFET MPA和MPB均导通,T1导通而MNA和MNB均截止,输出L为高电平。与此同时,M1通过MPA和MpB被VDD所激励,从而为T2的基区存储电荷提供一条释放通路。
另一方面,当两输入端A和B中之一为高电平时 ,则MpA和MpB的通路被断开,并且MNA或MNB导通,将使输出端为低电平。同时,M1A或M1B为T1的基极存储电荷提供一条释放道路。因此 ,只要有一个输入端接高电平,输出即为低电平。

四、CMOS传输门

MOSFET的输出特性在原点附近呈线性对称关系,因而它们常用作模拟开关。模拟开关广泛地用于取样——保持电路、斩波电路、模数和数模转换电路等。下面着重介绍CMOS传输门。

所谓传输门(TG)就是一种传输模拟信号的模拟开关。CMOS传输门由一个P沟道和一个N沟道增强型MOSFET并联而成,如上图所示。TP和TN是结构对称的器件,它们的漏极和源极是可互换的。设它们的开启电压|VT|=2V且输入模拟信号的变化范围为-5V到+5V 。为使衬底与漏源极之间的PN结任何时刻都不致正偏 ,故TP的衬底接+5V电压,而TN的衬底接-5V电压 。两管的栅极由互补的信号电压(+5V和-5V)来控制,分别用C和表示。
传输门的工作情况如下:当C端接低电压-5V时TN的栅压即为-5V,vI取-5V到+5V范围内的任意值时,TN均不导通。同时,TP的栅压为+5V
,TP亦不导通。可见,当C端接低电压时,开关是断开的。
为使开关接通,可将C端接高电压+5V。此时TN的栅压为+5V ,vI在-5V到+3V的范围内,TN导通。同时TP的棚压为-5V ,vI在-3V到+5V的范围内TP将导通。
由上分析可知,当vI<-3V时,仅有TN导通,而当vI>+3V时,仅有TP导通当vI在-3V到+3V的范围内,TN和TP两管均导通。进一步分析
还可看到,一管导通的程度愈深,另一管的导通程度则相应地减小。换句话说,当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管系并联运行,可近似地认为开关的导通电阻近似为一常数。这是CMOS传输出门的优点。
在正常工作时,模拟开关的导通电阻值约为数百欧,当它与输入阻抗为兆欧级的运放串接时,可以忽略不计。
CMOS传输门除了作为传输模拟信号的开关之外,也可作为各种逻辑电路的基本单元电路。

『玖』 什么是门电路,非门电路,与非门电路

【门】电路,就是【开关】电路。1、【与】门电路,就是以【与】的关系搭建的开关电路。2、【或】门电路,就是以【或】的关系搭建的电路。3、【非】门电路,就是以【非】的关系搭建的开关电路。4、与非门电路,就是以【与】相反的开关电路。——单独解释【与】、【或】、【非】、【与非】举例:1、【与】:一个灯泡串联两个开关接电源,把灯开亮的条件是,两个开关都接通,灯泡才亮,这两个开关的【串联】就是【与】的关系,即我【与】你同时接通才能搭建一个使灯得到信号的结果。2、【或】:两个开关并联接好再控制一个灯泡,我【或】你都能接通给灯泡提供信号使灯泡发光,两个开关【并联】是【或】的关系。3【非】:在一个发光的灯泡上并联一个开关,开关接通时,灯泡反而不能发光,即【非】发光,这个开关制止了信号,是【非】的功能。4、【与非】:把两个串联好的开关,并联在发光的灯泡的两端上,在两个开关都接通时,灯泡不发光,即我【与】你同时【串联】接通时,灯泡是【非】发光状态。还有【异或】门、【异或非】门-------道理同上。现在以【与非门】电路应用举例:一个4【与非门】集成块,内部含4个独立的【与非门】。只举例其中一个【与非门】的工作情况,它有两个信号输入端,一个输出端,输出端接一个已经发光的灯泡。当给一个输入端一个正信号,灯泡仍然发光,当两个输入端都加给一个正信号时,灯泡熄灭。也就是我【与】你同时发出信号时,灯泡【非】发光。

『拾』 安全门保护开关电路的原理

“非”就是输出与输入相反,输入高电平时输出是低电平,输入低电平时输出高电平。“与非”就是多个输入的输入状态在一致时有效,即输入都为高电平时输出才为低电平,只要有一个输入为低电平那么输出也不会为低电平。(相反的是:输入都是低电平时输出为高电平,有一个输入是高电平输出也不会是高电平。)形象的理解就是表决:大伙一致时通过,只要有一个反对就不通过。“或非”就是多个输入只要有一个是高电平输出就是低电平,不用一致。就像表决,只要有一个坚持通过,不管其他人的反对意见就通过。

阅读全文

与门开关电路相关的资料

热点内容
boost电路原理 浏览:225
飞涂外墙防水胶怎么样 浏览:8
如何查询百邦维修进度 浏览:742
广东gf防水材料多少钱一公斤 浏览:348
胶州仿古家具市场在哪里 浏览:249
汽车水泵保修期限 浏览:101
赣州市哪里回收旧家电 浏览:293
深圳市邸高家居 浏览:539
房屋漏水物业如何维修 浏览:54
前锋热水器泸州维修点 浏览:768
电动车维修技巧免费视频教程全集 浏览:449
电影里的智能家居 浏览:277
塔吊维修怎么写 浏览:373
成都家居用品公司 浏览:927
多久压电路 浏览:328
济南历城区家电维修地址 浏览:429
买华为平板如何注意买到翻新机 浏览:162
switch如何验证是不是翻新 浏览:275
济南lg空调售后维修电话 浏览:286
小米虹口维修点 浏览:199