『壹』 手机充电器电路原理图
亚力通万能充电器是抄比较典型的一款手机充电器,它将市电220V电源经一支1N4007二极管整流后,送到变频、偶和变压器和三管(13001)、三极管C1815、Z1稳压管竺元件组成的振荡电路。通过变压器次级绕组感应低压电源,经二极管整流、C4电容滤波后送到开关管(8550)然后输出,开关管受IC(YLT539)的控制,同时控制LED指示灯,以确定电池的充电程度。较好的万能充还可以用光电偶合管反馈充电程度用以控制电源的输入(如科奈信手机万能充电器)。
『贰』 手机充电器电路图原理
电路原理
在早期的手机通用充电器电路设计时,由于考虑到锂电池与镍氢电池充电特点的不同(锂电池充电电压为4.2V-4.4V,镍氢电池充电电压为4.3V-4.5V,且在给镍氢电池充电前,应先放电,以防止出现记忆效应)因此充电器电路比较复杂,一般由开关电源、基准电压、充电控制、放电控制和充电指示等电路组成,且基准电压、充电指示及充、放电控制电路多由运算放大器控制。近年来,由于绝大多数手机采用锂电池,加之出于制造成本考虑,通用型手机充电器的电路已非常简单,实为一简单的自激式开关电源电路。图1为一款诺基亚手机通用充电器实绘电路。 AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升至一定值时,在R3的作用下,Q2再次导通,重复上述过程,如此周而复始,形成自激振荡。在Q2导通期间,L3中的感应电动势极性为上负下正,D7截止;在Q2截止期间,L3中的感应电动势极性为上正下负,D7导通,向外供电。 图1中,VD1、Q1等元件组成稳压电压。若输出电压过高,则L2绕组的感应电压也将升高,D1整流、C4滤波所得电压升高。由于VD1两端始终保持5.6V的稳压值,则Q1 b极电压升高,Q1导通程序加深,即对Q2 b极电流的分流作用增强,Q2提前截止,输出电压下降 若输出电压降低,其稳压控制过程与上述相反。 另外,R6、R4、Q1组成过流保护电路。若流过Q2的电流过大时,R6上的压降增加,Q1导通,Q2截止,以防止Q2过流损坏。
『叁』 充电器的基本原理及基本电路图
用变压器将交流电降压,然后通过四个二极管将交流电变成波动的直流电,再通过电容滤波,简单说就是把波动的直流电弄成平稳的直流电,这样出来的直流电就可以供负载用了!
『肆』 12V电瓶充电器电路图
请看附图所示的12V电瓶充电器,适用于12V 10Ah 以下的电瓶充电。
12V 电瓶的终回止充点电压(限制电压)为答 14.4V,调整电位器,使电位器中点对正极电压为-(14.4V + 0.7V)即可。
取样三极管可以使用普通小功率 PNP 型三极管,功率输出管要使用大功率 NPN 型三极管就行了。
『伍』 充电器原理图
原理图:
对比:
高频机与工频机比较而言:尺寸小、重量轻、运行效率高(运行成本低)、噪音低,适合于办公场所,性价比高(同等功率下,价格低),对空间、环境影响小。
高亮度LED指示充电机的运行状态;
1.显示蓄电池电压、电源电压、充电电流、容量、时间等参数信息,故障代码显示故障内容;
2.具有开路、接反故障保护和报警功能;
3.具有过载、短路故障保护和报警功能;
4.具有变压器超温、模块超温等故障保护和报警功能;
5.具有自动检测、延时启动、软启动功能;
6.具有手动或自动均衡充电功能,保证蓄电池组单体容量的一致性;
『陆』 手机充电器电路图
这是自激振荡的方案,稳压管的钳位作用限制ⅤT1的导通深度,网上有这个电路原理的详细分析,建议搜索叁考下。
『柒』 手机充电器电路图分析
稳压管工作时是需要加反向电压才能正常工作的。依据这个规则,你就可以理解在电路里的接法了。所以这个接法是正确的。至于工作原理,有知友已说的很清楚了,如果不懂,建议你多看看书学习学习。
『捌』 手机充电器电路图
随着手机的使用频率越来越高,手机充电器的使用频率自然也是在逐渐上升的,但是手机充电器用久了之后,总是会出现很多问题,比如充不进去点或者是充电时间过长,下面针对这个问题,小编就为大家介绍一下手机充电器常见故障检修以及对手机充电器原理图做一下讲解。
手机充电器原理图讲解
分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。
由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制。
『玖』 这是充电器电路图请给我好好的分析解释一下。谢谢
这是一个小功率的充电器电路。
AC220V交流电经过D3整流,在C1上形成154V左右的DC电压。Q2与变压器L1、L2构成版自激振权荡电路。R3是启动电阻,通电瞬间为Q2基极提供电压,Q2开始进入导通至饱和,L1电流从0逐渐增大,自感电压方向上负下正,L2自感电压上正下负,经D1整流在C4上形成电压,当电压值大于5.6+0.7V时,VD1击穿,Q1导通,Q2基极电压被旁路,Q2从饱和退出,L1自感电压上正下负,经R7泄放,L2自感电压方向上负下正,C4放电,VD1和Q1相继截止,同时经R8和C2迫使Q2基极电位重新上升,至一定值后Q2又饱和导通,开始下一周期。
Q1、Q2、R4、R6又构成一个反馈电路,可以限制Q2射极电流,同时决定了变压器的储能大小,进而决定了输出电压的高低,实际上是一个稳压环路。
『拾』 12伏充电器电路图
充电器其实都是由一个稳定电源(主要是稳压电源、提供稳定工作电压和版足够的电流)加上必要权的恒流、限压、限时、过冲等控制电路组成。
原装充电器(指线充)上所标注的输出参数:比如输出4.4V/1A、输出5.9V/400mA,就是指内部稳压电源的相关参数。比如输出4.4V可以给4.5V的设备用,5.9V的可以给6V的设备用。
(10)充电器电路图扩展阅读:
充电电池的记忆效应,当记忆效应逐渐累积,会使电池的实际使用容量大幅下降。要减轻记忆效应所带来的负作用,一个有效的方法就是放电。
一般来讲由于镍镉电池的记忆效应比较明显,建议在反复充电使用5-10次后就作一次放电,而镍氢电池的记忆效应不太明显,可以在反复充电使用20-30次后作一次放电。
镍镉电池和镍氢电池的标称电压是1.2V,但实际上,电池的电压是个变化的值,随着电量是否充足,围绕着1.2V左右进行波动。一般在1V-1.4V之间波动,不同品牌的电池由于工艺上的不尽相同,电压波动范围也不完全一致。