A. 互补推挽电路的工作详细介绍
在一般推挽电路中,比如输出级,电路的工作是,把输入信号放大。而完成电路内工作,但一般推挽电容路用同级性原件(晶体管或电子管)为了实现输出级原件轮流导通,必须激励大小相等,相位相反的两个信号,即所谓的倒相问题,完成倒相可用电路,可用电感原件(变压器)但这无不增加了电路的复杂性,可靠性。互补电路可克服用单极性原件出现的上述问题。电路工作时双极性原件轮流导通,亦可省去倒相或简化电路,这样电路的稳定性可相应提高。
B. 两个13003怎么构成推挽互补电路
两个同极性的三极管不能构成互补电路,只能做有变压器的推挽电路。
要想做推挽互补电路,得找个参数相近的PNP功率管配对。
C. 互补推挽电路的优点与缺点
互补电路,稳定性高,工作可靠,且用晶体管可完成电子管电路不能构成的电路形式。这对电路简化集成有大的好处。但互补电路特别是功率级对原件要求较高,且配对等需仔细。
D. 互补推挽电路如下图
这个电路输出肯定来是5v,不会是20v。20v的正电自通过Q802和QQ803到地形成了20v的负载,方波只是放大了功率而已,也就是说方波的高低间强度增加了,而伏数仍然是5v。方案1:想要得到5V以上,只能通过逆变,或者在Q802与Q803发射极或基极加限流电阻,可以得到比5v更高一点的电压。方案2:将电位器改为(G表示)NPN三极管,Q802基极接G集电极,Q803基极加100K电位器到方波发生端,G基极直接到方波,G发射极到地。方案3:最好是直接并联三极管放大,然后到逆变器,随意得到想要的伏数。其他请参考关于逆变器的资料,学习更多的逆变知识。
E. 推挽电路和互补电路有什么区别
参考直接耦合互补输出级和乙类推挽功放;
通常我们习惯上把两只管子交替工作共射电路称为推挽,而把两只管子交替工作射极输出的称为互补。
F. 谁明白这个互补推挽式IGBT驱动电路原理。
IGBT没有P沟道,准互补做不出来,要做指能做准互补,我看了IGBT的伏安特性,IGBT管有放大区,说明可以做功放,但由于没有P沟道配对,只能做变压器推挽电路,或是甲类电路
G. 谁给我讲讲互补推挽电路(包括乙类和甲乙类的)
推挽放大器电路中,一只三极管工作在导通、放大状态时,另一只三极管处于截止状态,当输入信号变化到另一个半周后,原先导通、放大的三极管进入截止,而原先截止的三极管进入导通、放大状态,两只三极管在不断地交替导通放大和截止变化,所以称为推挽放大器。 互补推挽放大器 “互补”是通过采用两种不同极性的三极管,利用不同极性三极管的输入极性不同,用一个信号来激励两只不同极性的三极管,这样可以不需要有两个大小相等、相位相反的激励信号。电路中,一个是NPN型三极管,另一个是PNP型三极管,两只三极管的基极相连,在两管的基极加一个音频输入信号作推动信号。 两管基极和发射极并联,由于两只三极管的极性不同,基极上的输入信号电压对两管而言一个是正向偏置,一个是反向偏置。当输入信号为正半周时,两管基极同时电压升高,此时输入信号电压给一管加上正向偏置电压,所以该管进入导通和放大状态。由于基极电压升高,对另一管来讲加上反向偏置电压,所以该管处于截止状态。 输入信号变化到负半周后,两管基极同时电压下降,给另一管正向偏置,使该管进入导通和放大状态,而一管又进入截止状态。 这种利用NPN型和PNP型三极管的互补特性,用一个信号来同时激励两只三极管的电路,称之为 “互补”电路,由互补电路构成的放大器称为互补放大器电路。由于两个异极性管工作时,一只三极管导通、放大,另一只三极管截止,工作在推挽状态,所以称为互补推挽放大器。
H. 推挽电路的组成结构
如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem-pole)输出电路。
当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使 RC 常数很小,转变速度很快。
因此,推拉式输出级既提高电路的负载能力,又提高开关速度。推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。要实现线与需要用 OC(open collector)门电路。
电压和电流
在图(b)中的(1)所示的是图(a)中功率变压器Tr1的中心抽头的波形,这种波形是因为电流反馈电感Lcf的存在及一个经过全波整流后的正弦波在过零点时会降到零。因为Lcf的直流电阻可以忽略不计,所以加在上面的直流电压几乎为零,在Lcf输出端的电压几乎等于输人端的电压,即Udc。同时因为一个全波整流后的正弦波的平均幅值等于Uac=Udc=(2/π)Up,则中心抽头的电压峰值为Up=(π/2)Udc。由于中心抽头的电压峰值出现于开关管导通时间的中点,其大小为(π/2)Udc,因此另一个晶体管处于关断状态时承受的电压为πUdc。
假设正常的交流输入电压有效值为120V,并假设有±15%的偏差,所以峰值电压为1.41×1.15×120=195V。考虑到PFC电路能产生很好的可以调节的直流电压,大约比输入交流电压高20V左右,就有Udc=195+20=215V。这样晶体管要保证安全工作就必须能够承受值为πUd。的关断电压,也就是675V的电压。当前有很多晶体管的额定值都可以满足电流电压和频率ft的要求(如MJE18002和MJE18004,它们的Uce=1000V,ft=12MHz,β值最小为14)。即使晶体管的ft=4MHz也没有关系,因为晶体管在关断后反偏电压的存在大大减小了它的存储时间。
从图中的(2)~(5)可以看出,晶体管电流在电压的过零点处才会上升或下降,这样可以减少开关管的开关损耗。因为通过初级的两个绕组的正弦半波幅值相等,所以其伏秒数也是相等的,而且由于存储时间可以忽略(见图(b)中的(1)),也就不会产生磁通不平衡或瞬态同时导通的问题了。
每个半周期内的集电极电流如图中的(4)和(5)所示。在电流方
波脉冲顶部的正弦形状特点将在下面说明。正弦形状中点处为电流的平均值(Icav),它可以根据灯的功率计算出来。假设两盏灯的功率均为P1,转换器的效率为叩,输人电压为Udc,则集电极电流为
假设两灯管都是40W,转换器效率η为90%,从PFC电路得到的输人电压Udc为205V,则
I. 用两个推挽互补三极管驱动一个开关场效应管.这种电路知道吗不知道下
这个知道。开关场效应管的栅极相当于一个电容,当推挽互补三极管的上管驱动场效应管时,同时给场效应管的栅极结电容充电,要使场效应管迅速关断,必须快速将结电容的电放掉。下管就是起这个作用的,它的电源就是场效应管的栅极结电容被充电的电压。
J. 互补推挽电路的阻抗
不会啊对方速度发