⑴ 求一个大功率N沟道mos管(12V,2A)的驱动电路
第一级是小信号驱动,因为单片机输出功率不高,驱动第一级产生开关量,再驱动第内二级,第二级有偏容置,估计还是开关量,只是幅值放大了,高12,低0,第三级驱动PMOS开关,注意从第二级C级引出,因此POMS的G级PWM波与第二级相反(但是PMOS输出与第二级相同,因为PMOS为-电压导通,也具有反向作用),第四级为驱动NMOS又具有反向作用,其实我觉得只管驱动能力的话,第三级PMOS就可以驱动了,但是第三级输出与单片机输出反向,所有加了第四级,又具有反向,因此最终输出增强了驱动能力,PWM波与单片机输出相同,图中每一级输入与输出之前都具有反向的作用。希望能帮到你
⑵ 麻烦大神看看这个PMOS驱动电路的二极管和电容的作用是什么,答细有加分
无论MCU处于何种状态(含MCU断电),只要IO无输入(低电平),Q18都会关闭。因为D1、R2的存在,Q1关闭后D1和R2使Q18(G极)正偏。
图中C1为交流通道,D1为直流通导道(为Q18提供截止正压,应叫直流补尝二极管)。
至于D1、C1选值(主要是C1),这就视乎IO的输出频率而定。
⑶ 如何选择最适合的MOS管驱动电路
1、管种类和结构
MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。
至于为什么不使用耗尽型的MOS管,不建议刨根问底。
对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。
MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。
在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。
2、MOS管导通特性
导通的意思是作为开关,相当于开关闭合。
NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。
3、MOS开关管损失
不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。
MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。
导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。
4、MOS管驱动
跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。
在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。
第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。
上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。而且电压越高,导通速度越快,导通电阻也越小。现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。
MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs。讲述得很详细,所以不打算多写了。
5、MOS管应用电路
MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动。
5种常用开关电源MOSFET驱动电路解析
在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。更细致的,MOSFET还应考虑本身寄生的参数。对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。
当电源IC与MOS管选定之后, 选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。
一个好的MOSFET驱动电路有以下几点要求:
(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。
(2)开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。
(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。
(4)驱动电路结构简单可靠、损耗小。
(5)根据情况施加隔离。
⑷ Pmos管开关电路
下图是两种PMOS管经典开关电路应用:其中第一种NMOS管为高电平导通,低电平截断,Drain端接后面电路的接地端;第二种为PMOS管典型开关电路,为高电平断开,低电平导通,Drain端接后面电路的VCC端。
首先要进行MOSFET的选择,MOSFET有两大类型:N沟道和P沟道。在功率系统中,MOSFET可被看成电气开关。当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。这就是后面介绍电路图中栅极所接电阻至地。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。
第一步:选用N沟道还是P沟道
为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET。在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。当MOSFET连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用PMOS管经典开关电路,这也是出于对电压驱动的考虑。
第二步:确定额定电流
第二步是选择MOSFET的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOSFET能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。该参数以FDN304P管DATASHEET为参考,参数如图所示:
来看这个电路,控制信号PGC控制V4.2是否给P_GPRS供电。此电路中,源漏两端没有接反,R110与R113存在的意义在于R110控制栅极电流不至于过大,R113控制栅极的常态,将R113上拉为高,截至PMOS,同时也可以看作是对控制信号的上拉,当MCU内部管脚并没有上拉时,即输出为开漏时,并不能驱动PMOS关闭,此时,就需要外部电压给予的上拉,所以电阻R113起到了两个作用。R110可以更小,到100欧姆也可。
⑸ 求一个用NPN管驱动PMOS管的电路
1,R1,R2的阻值应该对调,因为是采用电压控制的PMOS管,阻值可以适当加大,减少功耗,如R1:10K,R2:200K,而且这样还有一个好处,大幅的减轻Q11的负载,也减轻了单片机I/O口的输出电流要求。
2,因为不清楚你的要求和整体电路,单从这个局部电路来说,我暂时无法对加稳压管这方面对你提供什么建议。
另,电路带“电”,调试小心。
⑹ 求一个NPN三极管驱动PMOS管的电路
的NPN型号不多。用多大电阻怎么计算。
另外显示用的锁存器我之前用的是74HC244,现在没有那个,换成74LS244行不
⑺ MOS全桥驱动电路
电路有两个输入端,逻辑上是互为反相的,即输入信号使Q1导通时,会令Q2截止;
Q1漏极输出回低电答平,通过R7使得Q4栅极也是低电平,从而令Q4导通,为电机通过了电源和电流。场效应管是电压驱动的,与三极管的电流驱动不同,因而为Q4通过栅压的R7,其取值小了,是浪费电,但也不能过大了,还要为此类场效应管是栅极电容提供充放电流;
另外一半电路同理
⑻ 分析这个Mos管驱动电路原理
上面的是P沟道场管,下面的是N沟道场管;
此电路中,N沟道场管的栅极电压高电平时导通低电平时截止,而P沟道场管的则刚好相反;
余下的,就希望你自己能去想想了;
⑼ mos驱动电路图看不懂
看了你们的对话,我发现楼主还没明白,小白没有关系,没开数电模电更没关系,现在的你能对照着图纸连接实物,说明你很有学习电路的潜力!! 下面我给你详细点的解释,希望对你有所帮助.
J3的三个端子:1.PWM信号,控制MOS管的开关,也可以接普通高电平,其实PWM信号就是一组不断高低变化的电平信号,这样MOS就不停地开关,如果改变PWM的高低比例,就起到了控制输出功率的作用.
2.Vcc是电源正极的意思 (在你这个电路里它不起作用,可以不接)
3,是地线(电源的负极)
J2的两个端子:1.地线(电源的负极)
2.Vs另一组电源正极(你这里,该电压是提供给空心杯做动力的)
J3的两个端子 1.MOS输出端,接空心杯负极
2.电源Vs输出,接空心杯正极
这里的Vs与Vcc应该是有区别的,Vcc是经过稳压后提供给系统的电源,比如单片机的+5V
Vs是给空心杯提供能源的,你这里应该直接电池的两端,或是专门有一组高放电倍率的航模专用锂电池!
二极管用的是普通的发光二极管,这里是指示工作状态用
这个图驱动两个空心杯没问题,如果还要更多也没有问题,但要注意给MOS加散热器.
⑽ 用PMOS管做开关控制3.3V电源,单片机的IO口接G极,输出的电平出现2V的波动
参考这个电路图《带软开启功能的MOS管电源开关电路》:
带软开启功能的MOS管电源开关电路