㈠ PMOS管应用原理
PMOS管应用原理
PMOS的工作原理与NMOS相类似。因为PMOS是N型硅衬底,其中的多数载流子是空穴,少数载流子是电子,源漏区的掺杂类型是P型,所以,PMOS的工作条件是在栅上相对于源极施加负电压,亦即在PMOS的栅上施加的是负电荷电子,而在衬底感应的是可运动的正电荷空穴和带固定正电荷的耗尽层,不考虑二氧化硅中存在的电荷的影响,衬底中感应的正电荷数量就等于PMOS栅上的负电荷的数量。当达到强反型时,在相对于源端为负的漏源电压的作用下,源端的正电荷空穴经过导通的P型沟道到达漏端,形成从源到漏的源漏电流。同样地,VGS越负(绝对值越大),沟道的导通电阻越小,电流的数值越大。
与NMOS一样,导通的PMOS的工作区域也分为非饱和区,临界饱和点和饱和区。当然,不论NMOS还是PMOS,当未形成反型沟道时,都处于截止区,其电压条件是
VGS<VTN (NMOS),
VGS>VTP (PMOS),
值得注意的是,PMOS的VGS和VTP都是负值。
PMOS集成电路是一种适合在低速、低频领域内应用的器件。PMOS集成电路采用-24V电压供电。CMOS-PMOS接口电路采用两种电源供电。采用直接接口方式,一般CMOS的电源电压选择在10~12V就能满足PMOS对输入电平的要求。
MOS场效应晶体管具有很高的输入阻抗,在电路中便于直接耦合,容易制成规模大的集成电路。
各种场效应管特性比较
在2004年12月的国际电子器件会议(IEDM)上表示:双应力衬垫(DSL)方法导致NMOS和PMOS中的有效驱动电流分别增加15%和32%,饱和驱动电流分别增加11%和20%。PMOS的空穴迁移率在不使用SiGe的情况下可以提高60%,这已经成为其他应变硅研究的焦点。
PMOS管
pmos PMOS是指n型衬底、p沟道,靠空穴的流动运送电流的MOS管 全称 : positive channel Metal Oxide Semiconctor 别名 : positive MOS
㈡ PMOS做5V电源开关问题
把r56或r52焊上试试。检测二极管,是否完好。
㈢ 关于一个电源电子开关的电路分析。用PNP和PMOS做的。
㈣ Pmos管开关电路
下图是两种PMOS管经典开关电路应用:其中第一种NMOS管为高电平导通,低电平截断,Drain端接后面电路的接地端;第二种为PMOS管典型开关电路,为高电平断开,低电平导通,Drain端接后面电路的VCC端。
首先要进行MOSFET的选择,MOSFET有两大类型:N沟道和P沟道。在功率系统中,MOSFET可被看成电气开关。当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。这就是后面介绍电路图中栅极所接电阻至地。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。
第一步:选用N沟道还是P沟道
为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET。在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。当MOSFET连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用PMOS管经典开关电路,这也是出于对电压驱动的考虑。
第二步:确定额定电流
第二步是选择MOSFET的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOSFET能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。该参数以FDN304P管DATASHEET为参考,参数如图所示:
来看这个电路,控制信号PGC控制V4.2是否给P_GPRS供电。此电路中,源漏两端没有接反,R110与R113存在的意义在于R110控制栅极电流不至于过大,R113控制栅极的常态,将R113上拉为高,截至PMOS,同时也可以看作是对控制信号的上拉,当MCU内部管脚并没有上拉时,即输出为开漏时,并不能驱动PMOS关闭,此时,就需要外部电压给予的上拉,所以电阻R113起到了两个作用。R110可以更小,到100欧姆也可。
㈤ 如下图PNP三极管和Pmos管稳压电路是如何工作的呢
高频干扰几个并联电容首先能滤掉一部分。
如系统发生电压升高:
- D4稳压管两端电压不变,既PNP基极电压不变。
- 但电流增大也就是R1两端电压升高,既PNP发射极与基极电压差变大。这时PNP导通能力变大或者导通。(这样会把一部分电流分流出去,分到R4上)
- 由于分流到R4,两端电压升高(栅极电压升高),能起到抑制P-MOS导通能力。既可以限制电流,电压升高。
如系统发生电压偏低:
- C4储能通过二极管释放能起到稳压作用。
而且终端芯片应该也是稳压芯片。它本身能在一定的电压浮动范围内可以稳定输出电压。
㈥ P MOS管电路无法关断电源的问题
MOS管不等同三极管应用,栅极对地接个10K的下拉电阻看看情况会怎样。
㈦ 请教PMOS管开关电路
图二电路这个是不需要关断。本人菜鸟,请问下,确定当VIN输入5V的时候,VOUT也有5V吗?为什么D,S换了个方向也可以导通呢?
㈧ pmos管咋工作的,整个电路
天猫里边儿管咋工作?整个电路对的,你可以看到电路图。分析图。
㈨ S-8211DAR用于均衡充电电路时MOSFET用P管还是N管呢
S-8211芯片跟DW-01相若,2个N-mos作充放电输出控制,很多8脚封装的mos芯片内里已有2个如STC5NF20,FDS9926A...等。
㈩ P沟道MOS管开关电路
P沟道MOS管开关电路图:
MOS管的工作原理(以N沟道增强型MOS场效应管)它是利用VGS来控制“回感应答电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏极电流的目的。在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。