⑴ PLL(锁相环)工作原理是﹖
锁相环路是一种反馈电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。其作用是使得电路上的时钟和某一外部时钟的相位同步。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压 的相位被锁住,这就是锁相环名称的由来
在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。因此,所有板卡上各自的本地 80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。锁相环路是一个相位反馈自动控制系统。它由以下三个基本部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)。
锁相环的工作原理:
1. 压控振荡器的输出经过采集并分频;
2. 和基准信号同时输入鉴相器;
3. 鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;
4. 控制VCO,使它的频率改变;
5. 这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。
锁相环可用来实现输出和输入两个信号之间的相位同步。当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。这时,压控振荡器按其固有频率fv进行自由振荡。当有频率为fR的参考信号输入时,uR 和uv同时加到鉴相器进行鉴相。如果fR和fv相差不大,鉴相器对uR和uv进行鉴相的结果,输出一个与uR和uv的相位差成正比的误差电压ud,再经过环路滤波器滤去ud中的高频成分,输出一个控制电压uc,uc将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv= fR,环路锁定。环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。这时我们就称环路已被锁定。
环路的锁定状态是对输入信号的频率和相位不变而言的,若环路输入的是频率和相位不断变化的信号,而且环路能使压控振荡器的频率和相位不断地跟踪输入信号的频率和相位变化,则这时环路所处的状态称为跟踪状态。
⑵ 锁相环的原理
锁相环
一.基础理论
锁相环路(Phase Locked Loop)是一个闭环的相位控制系统,它的输出信号的相位能自动跟踪输入信号相位。系统框图如下:
ui(t) uo(t) θ1(t) θ2(t)
当 与 相等时,两矢量以相同的角速度旋转,相对位置,即夹角维持不变,通常数值又较小,这就是环路的锁定状态。
从输入信号加到锁相环路的输入端开始,一直到环路达到锁定的全过程,称为捕获过程。设系统最初进入同步状态 的时间为 。那么从 的起始状态到达进入同步状态的全部过程就称为锁相环路的捕获过程。捕获过程所需的时间 称为捕获时间。显然,捕获时间 的大小不但与环路的参数有关,而且与起始状态有关。
对一定的环路来说,是否能通过捕获而进入同步完全取决于起始频差 。若 超过某一范围,环路就不能捕获了。这个范围的大小是锁相环路的一个重要性能指标,称为环路的捕获带 。
捕获状态终了,环路的状态稳定在
(1-1)
这就是同步状态的定义。只要在整个变化过程中一直满足(1-1)式,那幺仍称环路处于同步状态。由上可知,在输入固定频率信号的条件之下,环路进入同步状态后,输出信号与输入信号之间频差等于零,相差等于常数,即
常数
这种状态就称为锁定状态。
锁相环路的组成
锁相环路为什幺能够进入相位跟踪,实现输出与输入信号的同步呢?因为它是一个相位的负反馈控制系统。这个负反馈控制系统是由鉴相器(PD)、环路滤波器(LF)和电压控制振荡器(VCO)三个基本部件组成的,基本构成如图:
实际应用中有各种形式的环路,但它们都是由这个基本环路演变而来的。下面逐个介绍基本部件在环路中的作用
鉴相器(PD) 是一个相位比较装置,用来检测输入信号相位与反馈信号相位之间的相位差。输出的误差信号是相差的函数,即鉴相特性可以是多种多样的,有正弦形特性、三角形特性、锯齿形特性等等。常用的正弦鉴相器可用模拟相乘器与低通滤波器的串接作为模型。
环路滤波器(LP) 具有低通特性,它可以起到图中低通滤波器的作用,更重要的是它对环路参数调整起差决定性的作用。
压控振荡器(VCO) 是一个电压—―频率变换装置,在环中作为被控振荡器,它的振荡频率应随输入控制电压 线性地变化。实际应用中的压控振荡器的控制特性只有有限的线性控制范围,超出这个范围之后控制灵敏度将会下降。
压控振荡器应是一个具有线性控制特性的调频振荡器,对它的基本要求是:频率稳定度好(包括长期稳定度与短期稳定度);控制灵敏度 要高;控制特性的线性度要好;线性区域要宽等等。这些要求之间往往是矛盾的,设计中要折衷考虑。
压控振荡器电路的形式很多,常用的有 压控振荡器、晶体压控振荡器、负阻压控振荡器和 压控振荡器等几种。前两种振荡器的频率控制都是用变容管来实现的。由于变容二极管结电容与控制电压之间具有非线性的关系,所以压控振荡器的控制特性肯定也是非线性的。为了改善压控特性的线性性能,在电路上采取一些措施,如与线性电容串接或并接,以背对背或面对面方式连接等等。在有的应用场合,如频率合成器等,要求压控振荡器的开环噪声尽可能低,在这种情况下,设计电路时应注意提高有载品质因素和适当增加振荡器激励功率,降低激励级的内阻和振荡管的噪声系数。
二. 环路的性能
环路的基本性能
如上所述,环路有两种基本状态。
其一是捕获过程。评价捕获过程性能有两个主要指标。一个是环路的捕获带 ,即环路能通过捕获过程而进入同步状态所允许的最大固有频差 。若 ,环路就不能通过捕获进入同步状态。故
另一个指标是捕获时间 ,它是环路由起始时刻到进入同步状态的时刻之间的时间间隔,捕获时间 的大小除决定于环路参数之外,还与起始状态有关。一般情况下输入起始频差越大, 就越大,通常以起始频差等于 ,来计算最大捕获时间,并把它作为环路的性能指标之一。
环路的另一个基本工作状态是同步。环路锁定之后稳态频差.等于零。稳态相差通常总是存在的。它是一个固定值,反映了环路跟踪的精度,是一重要的指标。此外,已经锁定的锁相环路,若再改变其固有频差 ,稳态相差会随之改变。当固有频差 增大到某一值时,环路将不能维持锁定。这个锁相环路能够保持锁定状态所允许的最大固有频差称为环路的同步带,也是环路的一个重要参数。
上面提到的几项指标是对环路最基本的性能要求。锁相环路作为一个控制系统,要全面衡量它的性能尚有一系列的指标,诸如稳定性、响应速度、对干扰和噪声的过滤能力等等。
环路的跟踪性能
实际的锁相环路在锁定状态之下的稳态相差通常是比较小的。锁定之后,若输入信号的相位 发生变化,被控振荡器的输出相位 将进行跟踪,在此过程中环路相差 是变化的。假如在整个跟踪过程中,环路相差 始终比较小。这种可以将环路近似为线性系统来进行分析的跟踪过程称为线性跟踪。应该注意,线性跟踪是在环路的同步状态下进行的,这是锁相环路正常工作时最常见的情况,工程上有实用价值,应引起我们的重视。
当环路处于锁定状态时,输出频率与输入频率相同,两者之间只有一稳态相差。在此条件下,若输入信号发性相位或频率的变化(干扰或调制所引起的),通过环路自身的控制作用,环路输出信号,也即压控振荡器的振荡频率和相位,会跟踪输入信号的变化。如果是理想的跟踪,输出信号的频率和相位应时时与输入信号相同。其实不然,环路需有一个跟踪过程。首先,出现过程,有暂态相位误差,其次在到达稳定状态后,据输入信号形式的不同,有不同的相位误差。上述由于输入信号变化而引起的暂态相位误差和稳态相位误差的大小,是衡量环路线性跟踪性能好坏的重要标志。它们不仅与环路本身的参数有关,还与输入信号的变化形式有关。
根据分析可知,
对于同一种环路来说,输入信号变化越快,跟踪信能就越差。
同一信号加入不同的锁相环路,其稳态相差是不同的。
事实上,决定环路稳态跟踪相差的不是环路开环传递函数总极点的个数------“阶”,而是在原点处的极点个数------“型”。
环路噪声性能
锁相环路无论工作在哪种应用场合,都不可避免地受到噪声和干扰的作用。噪声和干扰的来源主要有两类:一类是与信号一起进入环路的输入噪声与谐波干扰。输入噪声包括信号源或信道产生的白高斯噪声、环路作载波提取用时信号调制形成的调制噪声,另一类是环路部件产生的内部噪声与谐波干扰,以及压控振荡器控制端感应的寄生干扰等,其中压控振荡器内部的噪声是主要的噪声源。
噪声与干扰的作用必然会增加环路捕获的困难,降低跟踪性能,是环路输出相位产生随机的抖动。若环路用作频率合成信号源与微波固态信号源,则输出频谱不纯,短期频率稳定度变差;若环路用作调制解调器,则输出信噪比下降,较强的干扰与噪声还会使环路发生跳周和失锁的概率加大,以致出现门限效应。
环路捕获性能
捕获概念 在开机、换频、和由开环到闭环,一开始环路总是失锁的,因此环路需经由失锁进入锁定的过程。通常把使环路进入锁定的过程称为捕获。
在我们应用的锁相环中,存在相位捕获和频率捕获两个捕获过程。
自捕获和辅助捕获 如果环路依靠自己的控制能力达到捕获锁定,称这种捕获过程为自捕获。若环路借助于辅助电路才能实现捕获锁定,则称这种捕获过程为辅助捕获。
在固定频率输入下,视固有频差 的大小,二阶环路有产生稳定的差拍状态和进入锁定两种可能性。保证环路必然进入锁定的最大固有频差值,称为捕获带。由于二阶环的捕获过程包含频率捕获和相位捕获两个过程,通常又把保证环路只有相位捕获一个过程的最大固有频差值,称为快捕带。频率捕获所需的时间,称为频率捕获时间(或频率牵引时间)。相位捕获所需要的时间称为快捕时间(或相位捕获时间)。通常频率捕获时间总是远大于相位捕获时间的,所以一般所说的捕获时间,就是指频率捕获时间,而不考虑相位捕获时间的影响。
依靠环路的自身捕获,捕获时间长,捕获带窄,另外还可能出现延滞、假锁等不能可靠捕获的现象。因此研究各种有效的辅助捕获方法,是十分必要的。
为改善环路捕获性能,总希望捕获带越宽越好,捕获时间越短越好。为了加大环路的捕获带,应提高环路的增益K或者增加滤波器的带宽。为缩短环路的捕获时间,除用与前者相同的措施以外,还可设法减小作用到环路上的起始频差。但是加大环路增益或滤波器带宽往往是与提高环路的跟踪性能和滤波性能的要求相矛盾的。一般在设计还路时,总是优先考虑环路的跟踪性能和滤波性能,而对捕获性能的要求,则采用一些辅助捕获的方法来得到满足。此外,为了有效地克服延滞与假锁,在环路中也往往要求加入辅助捕获装置。
主要介绍辅助频率捕获方法:
它的基本出发点是:(1)减小作用到环路上的起始频差使之快速落入快捕带内,达到快速锁定。属于这方面的有人工电调、辅助扫描、辅助鉴频和鉴频鉴相等几种方法;(2)使用两种不同的环路带宽和增益,捕获时使环路具有较大的带宽和增益,锁定以后是环路带宽或增益减小。这就是所谓的变带宽和变增益法。
三.电路实解
(一).鉴相器
鉴相器是锁相环路的关键部件。在频率合成器中所采用的鉴相器主要有正弦波相位检波器与脉冲取样保持相位比较器两种。
1) 正弦波相位检波器这种鉴相器实际上是一个平衡混频器,它的原理图如下:
但是它是一种要求平衡度比较高的检波电路,平衡对称性很重要。它容易形成纹波输出,这对数字锁相环路特别有害,因为它将使锁相环路输出混有杂散信号所以数字式频率合成器常采用下面的脉冲抽样保持鉴相器。
2) 脉冲抽样保持相位比较器
下图为这种相位比较器的基本方框图:
它有以下两个优点:
(1) 输出纹波电压小。
(2) 相位比较可在360°范围内进行。
首先将参考标准频率 和VCO的频率 的电压都形成脉冲。频率为 的脉冲用来控制一个开关电路,使电容 产生周期性的充、放电,形成如下图(a)的锯齿形波电压:
电 (a) 处产生的锯齿波电压(频率= )
压
t
电 (b)抽样脉冲(频率= )
压 t
(c) 误差信号
电
压
t
由于 ,显然,抽样脉冲周期 与锯齿波电压的周期 是相等的。抽样脉冲的作用是控制抽样开关,使它在脉冲存在时接通,因而记忆电容 上所获得的电压即等于这一瞬间的锯齿波电压 。当抽样脉冲为零时,抽样开关断路, 上既保持原充电电压 ,如图(c)所示。如果VCO频率略有变化(亦即失步时),即相当于抽样脉冲在中心位置略有摆动,这就引起误差电压值 的变化,从而控制VCO的频率,使之恢复到准确的数值(即恢复同步)。 最大的变动范围可从 到 ,相当于抽样脉冲位置变动360°。实际上,锯齿波电压不是如图(a)的理想情况( 的放电时间等于零),而是有一定的放电时间的,因而锁相范围小于360°。
(二).电荷泵(Charge Pump)
如下图所示电荷泵(Charge Pump)示意图:
电荷泵的的作用主要是:给锁相环路提供理想恒定的电流源,保持良好的线性关系,使得频率范围易于控制。图中电容Cp的作用主要是降低杂讯干扰。增加R2主要是保证电荷泵的稳定性。
(三).低通滤波器
下图是低通滤波器示意图:
图中C4这一阶的作用是进一步降低电荷泵的相位噪声。Cp是保证瞬时特性,使得环路更好得跟踪输入频率的变化。
对VCO的要求:具有高的频谱精度;电压频率具有线性传输特性;频率稳定;低功耗。
(四).闭环传输函数的计算(ADI SIM PLL 软件)
环路滤波器参数的设置
ADI Sim PLL V3.0使应用工程师从繁杂的数学计算中解脱出来。我们只要输入设置环路滤波器的几个关键参数,ADI Sim PLL就可以自动计算出我们所需要的滤波器元器件的数值。这些参数包括,鉴相频率PFD,电荷泵电流Icp,环路带宽BW,相位裕度,VCO控制灵敏度Kv,滤波器的形式(有源还是无源,阶数)。计算出的结果往往不是我们在市面上能够买到的元器件数值,只要选择一个最接近元器件的就可以。
通常环路的带宽设置为鉴相频率的1/10或者1/20。
相位裕度设置为45度。
滤波器优先选择无源滤波器。
滤波器开环增益和闭环增益以及相位噪声图之间的关系。闭环增益的转折频率就是环路带宽。相位噪声图上,该点对应于相位噪声曲线的转折频率。如果设计的锁相环噪声太大,就会出现频谱分析仪上看到的转折频率大于所设定的环路带宽。
不同的厂家会提供不同的计算方法,下边是一个经验计算式。
三阶:F1(s)= ( 1+C2R2)/s(C2R2Cps+C2Cp)
四阶:F(s)= F1/(1+C4R4s)
设Kv为VCO的增益,Kp为鉴相器的增益,α,β均取经验值3-4。可由下式计算:
ωc=KvKp/N.(R2C2)/(C2+Cp) 又Cp<<C2,
R2=Nωc/KvCv, C2=α/R2ωc,Cp=1/βR2ωc.
(五).下图为锁相环路的分频
(六).LBW及噪声计算
LBW是锁相环的的开环带宽,一般来讲,它是进入鉴相器参考频率的十分之一。由上图可知,13MHz除频后为200KHz,GSM的LBW为20KHz,锁相时间小于577µs.
噪声计算如下图:
ΦNR ΦNθ ΦNV
ΦNr是参考信号的噪声,φNθ是鉴相器带来的噪声,φNv是VCO带来的噪声
φ=KvF(s)( φNr+φNθ)/ s(1+KvF(s)/Ns) + φNθ/(1+KvF(s)/Ns)
= G(z)(φNr+φNθ) + Gr(z)φNθ
G(z)是低通传输函数,Gr(z)是高通传输函数。
⑶ 给个锁相环跟踪的电路图
可以 不过有频率限制的 看你要多少频率的才能推荐啊 常用的锁相环有国半的233x,TB31232,MCD2926,mcd8825 加 我 行 努力
⑷ 我做锁相环的调频仿真电路,用multisim10进行仿真,电路图搜正确了,可是仿真出来的波形跟我下载下来的不
弱弱的问一下,这个在哪里找到的??
⑸ 同步设备之间的锁相怎么接线
同步设备之间的锁相怎么接线?UPS电源一般有三个级别的保护,1是市电正常的时候,它稳压稳频。2是市电中断或严重不稳时,由电池供电。3是电池放光电后旁路还有正常的电力供应时,它就转到旁路去供电。还有一种情况是UPS自身的逆变器出现故障或逆变器过载时,它会自动转到旁路去供电。也就是说旁路供电是UPS的最后一道保护,为了能够在这种时候安全的转到旁路供电而对后端的设备不造成影响,就要求UPS平时的输出的频率要与旁路供电的频率同步,这就是锁相,具体的原理是UPS内部有两个电路,一个是从旁路采样的,另一个是自身震荡出来的标准正弦波,UPS按照标准的正弦波逆变,但是频率随旁路的频率变化而变化,但是为了保护后端负载,UPS都有一个同步的范围,一般是正负3HZ,超出这个范围或是旁路没电了,UPS就只按本机内部的标准输出 了。
21
分享评论
踩
UE Electronic 医疗电源 UE电源 爱护地球
值得一看的医疗相关信息推荐
UE Electronic专注医疗电源,since1989;医疗器械电源,家用医疗电源,康复医疗电源正品供应;认证通过:UL60601,EN60601,2MOPP标准,符合六级能效
fuhua-cn.com广告
维谛技术ups电源_高性价比
值得一看的ups电源相关信息推荐
维谛技术Liebert GXE2 是一款高效,小巧,简便的小型高性价比塔式UPS,性能卓越,保证可靠供电,小巧灵活,适用多种场景,易搬运,易使用,易维护,带给您超值的供电保障体验。
vertiv.cn广告
十分钟有问必答
1922人正在问
UPS同步锁相的原理是什么?
去提问
— 你看完啦,以下内容更有趣 —
UPS的一级锁相和二级锁相什么意思
准确地说,应该是 一级锁相环和二级锁相环吧。 ------------------------------------------- 本文介绍一种基于TT公司制造的TMS320C240DSP控制器构成的大功率并联型UPS同步控制方案。与电网的同步、并联系统中各台UPS间的同步,成为并联UPS系统控制的关键。UPS并联系统中的核心部分是精度很高的锁相环,模拟锁相环是一门成熟的技术,以其独特的优良性能在许多领域得到了广泛的应用。但随着数字技术的发展,UPS的全数字化控制是大势所趋,因此,锁相环也逐渐过渡为数字化,数字DSP控制锁相环相对于模拟锁相环实现起来更方便,同时用软件代替硬件实现,还可以结合系统的其他功能统一设计,节省成本。 1TMS320C240DSP控制器介绍 TMS320C240是美国TI公司专为数字电机控制运用而推出的一种16位定点运算的DSP,为控制系统应用提供了一种理想的解决方案。它具有以下的主要组成部分:3个通用定时器,可输出3路比较/PWM脉冲,3个全比较单元,可输出3对带死区控制的比较/PWM脉冲,3个单比较单元,可输出3路比较/PWM脉冲,4个捕获引脚CAP,用于高速I/O管理;两组各8路10位10μs的A/D转换器,看门狗定时器和定时中断定时器;片内ROM或Flash存储器等。 2并联系统UPS的同步控制方案 2.1UPS的锁相控制原理 市电电压波形及UPS输出电压波形都是正弦波。设UPS逆变电压的频率为f,而市电电压的频率为f1,市电电压波形的瞬时值可表示为 μ1=Um1sinω1t=Um1sin2πf1t UPS逆变输出电压波形的瞬时值可表示为 μ=Umsin(ωt±θ)=Umsin(2πf1t±θ) 其中+θ为UPS输出波形超前于市电波形的相位角;-θ为UPS输出波形滞后于市电波形的相位角。 要实现UPS与市电的同步必须要求:f=f1,θ=0,关键在于如何实现2πf1t=2πft±θ,只能通过改变f 使得θ逐步减小,最终θ=0,f=f1,当UPS输出波形超前于市电波形时,则要求该UPS输出电压的频率 降低,即 f=f1-θ/2πt 当UPS输出电压波形滞后于市电波形时,则要求UPS输出电压的频率升高,即 f=f1+θ/2πt 2.2并联UPS系统同步锁相的实现 并联系统UPS在市电与逆变切换时,若在切换的瞬间二者的输出波形不一致,会造成供电的中断,另一方面也可能会因两个电压源之间的环流过大而损坏UPS。为确保UPS系统市电与逆变在切换时不存在环流,需保证市电波形与逆变波形保持相位接近。因此需要一种装置用来检测市电的相位变化,并用于控制逆变器输出电压的相位和频率,使逆变器与市电保持同步运行。 对于并联系统UPS的锁相可采用两级锁相结构。其中,一级锁相环又称外同步,是指并联系统各UPS跟踪市电相位和频率并进行相互间的相位同步控制,即实现UPS与旁路市电的同步,二级锁相环又称内同步,是指基于各台UPS输出电压的频率及相位跟踪和同步控制,使其实现各台UPS间的同步。两级锁相环都采用了PI调节器,其中,内同步速度较快,精度很高(=10us以内),使其确保了UPS之间的并联环流达到最小。外同步的PI调节器速度较慢,使其确保了旁路和逆变器之间的平滑切换。每级锁相环包括相位误差检测、调节器的调节。以下分别介绍各级锁相环是如何实现的。 (1)外同步 两台UPS的输入即市电经比较器电路整形为方波,经过同步母线综合后,将该方波信号送到每台UPS的DSP捕获牢元CAPI引脚,设置上升沿或下降沿捕获,则在方波信号发生相应跳变时迸人捕获1中断读取计数器T2CNT的值作为PI调节器的反馈信号,通过与设定值相比较即可得出相位差,再经PI调节器的运算形成调节量,用于改变T2PR的值,从而使逆变输出跟踪市电基准。 (2)内同步 T2计数器作为UPS正弦输出的相位和频率基准,为保证所有UPS之间的同步,所有UPS都利用T2CNT发生一个方波,方波经同步母线综合后,送到所有UPS的CAP2端口,在方波信号发生相应跳变时进入捕获2中断中对T2CNT清零,保证内同步的给定是同步的。 在正弦中点时对应的中断中读取T2CNT值作为反馈量,与T2PR/2相比较,再经PI调节器运算后得到的调节量用于改变TIPR的值,使逆变输出正弦波和T2计数器同步,从而逆变输出保持同步。
1赞·227浏览2018-09-27
UPS电源内部电路需要锁相环电路么?
下面几个兄弟的答案合起来就更好了,呵呵,离线式UPS不需要,在线式UPS需要。 在线式UPS除了逆变输出频率要锁旁路频率以外(这是为了保证UPS由市电逆变状态转入旁路状态,或者旁路状态转到市电逆变状态时相位保持一致)以外,当UPS并机过程中的几台机器输入源为不同相位和频率的电网时,往往还需要指定主机,以确保从机的市电逆变输出的电压频率和相位对主机进行锁定。 这里被锁相的源头不需要是准确的50或者60Hz,我国泰尔认证的要求是频率变化范围为正负4%,对应到50Hz系统就是正负2Hz
2赞·543浏览
ups如何做到与世界同步
UPS电源一般有三个级别的保护,1是市电正常的时候,它稳压稳频。2是市电中断或严重不稳时,由电池供电。3是电池放光电后旁路还有正常的电力供应时,它就转到旁路去供电。还有一种情况是UPS自身的逆变器出现故障或逆变器过载时,它会自动转到旁路去供电。也就是说旁路供电是UPS的最后一道保护,为了能够在这种时候安全的转到旁路供电而对后端的设备不造成影响,就要求UPS平时的输出的频率要与旁路供电的频率同步,这就是锁相,具体的原理是UPS内部有两个电路,一个是从旁路采样的,另一个是自身震荡出来的标准正弦波,UPS按照标准的正弦波逆变,但是频率随旁路的频率变化而变化,但是为了保护后端负载,UPS都有一个同步的范围,一般是正负3HZ,超出这个范围或是旁路没电了,UPS就只按本机内部的标准输出 了。
52浏览
简述UPS的工作原理
、UPS及其工作原理简介 UPS是英文Uninterruptible Power Supply的缩写,意为“不间断供电电源”,是一种含有储能装置(常见的是蓄电池),以逆变器为主要组成部分的恒压恒频的不间断电源,它可以解决现有电力的断电、低电压、高电压、突波、杂讯等现象,使计算机系统运行更加安全可靠。现在已经被广泛应用计算机、交通、银行、证券、通信、医疗、工业控制等行业,并且正在迅速地走入家庭。 下面,让我们先简单地了解一下UPS的工作原理。 当我们没有使用UPS的时候,PC机、打印机等终端设备是直接接入市电使用的,用了UPS,就将PC机、打印机等终端设备接到UPS上使用,而UPS再接入市电。当市电输入正常时,UPS将市电稳压后供应给终端设备(相对于UPS而言,我们将这些终端设备称为负载)使用,此时的UPS就是一台交流市电稳压器,同时它还向自己的内置电池充电;当市电中断(例如停电)时, UPS 立即将内置电池的电能,通过逆变转换的方法向负载继续供应220V交流电,使负载维持正常工作并保护负载的软、硬件系统不受损坏。 二、市电对家用PC机及其终端设备的影响 如果我们的PC机、计算机网络等设备不使用UPS,又会受到哪些影响呢?不少人都有一个常见的错误概念,认为我们使用的市电,除了偶尔发生的停电事故外,都是连续而且恒定的。其实不然。市电系统作为公共电网,上面连接了成千上万各种各样的负载,其中一些较大的感性、容性、开关电源等负载不仅从电网中获得电能,还会反过来对电网本身造成影响,恶化电网或局部电网的供电品质,造成市电电压波形畸变或频率漂移。另外,意外的自然和人为事故,如雷击、输变电系统断路或短路、电源插头地错误拔插等,都会危害电力的正常供应,从而影响负载的正常工作。尤其需要特别指出的是,PC机、网络设备、通信系统、医疗设备等都属于非常精密的电子设备,对它们的影响表现得尤为突出。 对于PC机来说,显示器及主机工作都需要正常的电力供应。尤其是内存,对电源的要求更高,它是一种依赖电能的存储设备,需要不断的刷新动作来保持存储内容,一旦断电,所保存的内容立即消失。如果非正常断电,导致内存中的信息来不及保存到硬盘等存储设备上,就会造成信息因完全丢失或变得不完整而失去价值,从而浪费大量的工作精力和时间;而象UNIX、Linux这样的操作系统(现在不少的电脑爱好者使用这种操作系统),如果不正常关机,内存中的系统信息没有回写到硬盘上,还可能造成系统崩溃,无法再次启动;此外,电脑中的硬盘,虽然应用的是磁存储介质,不会因断电而损失信息,但突然的电力故障会使正在进行读写工作的硬盘物理磁头损坏,或者系统文件在维护文件系统时,造成文件分配表错误,从而使硬盘产生坏道,严重的,甚至还会造成整个硬盘的报废;另外,现在的操作系统大都能设置虚拟内存,由于突然的断电,使系统来不及取消虚拟内存,从而造成硬盘中的“信息碎片”,不仅浪费了硬盘存储空间,还会导致机器运行缓慢;电脑电源是一种整流电源,过高的电压可能会造成整流器烧毁。而电压尖脉冲和暂态过电压以及电源杂讯等干扰都可能通过整流器进入主机板,影响机器的正常工作,甚至烧毁主机线路。 一般情况下,标准正弦波(220V,50Hz)是一种理想状态,但实际情况下,根据电力专家的测试,电网中经常发生并且对计算机或精密仪器产生干扰或造成损坏的情况主要有以下几种:电涌、高压尖脉冲、暂态过电压、电压下陷、电线噪声、频率漂移、持续低电压、市电中断等。 1. 电涌(Power Surges):指输出电压有效值高于额定值110%,而且持续时间达一个或数个周期。电涌主要是由于在电网上连接的大型电气设备关机时(例如常见的家用空调关机时),电网因突然卸载而产生的高压(我们都会有这样的切身体会:在晚上6:00至9:00左右的时间段,是用电的高峰期,市电电压普遍偏低,家里的照明灯比较暗,过了用电高峰期,比如说在晚上10:00左右,你会发现家里的照明灯突然一闪,并且亮了很多,这就是我们在日常生活中最常见到的一种电涌现象)。 2. 高压尖脉冲(High Voltage Spikes):指峰值达6000v,持续时间从万分之一秒至二分之一周期(10ms)的电压。这主要由于雷击、电弧放电、静态放电或大型电气设备的开关操作而产生。 3. 暂态过电压(Switching Transients):指峰值电压高达 20000V,但持续时间界于百万分之一秒至万分之一秒的脉冲电压。其主要原因及可能造成的破坏类似于高压尖脉冲,只是在解决方法上会有区别。 4. 电压下陷(Power Sags):指市电电压有效值介于额定值的80%至85%之间的低压状态,并且持续时间达一个到数个周期。大型设备开机,大型电动机启动,或大型电力变压器接入都可能造成这种问题。 5. 电线噪声(Electrical Line Noise):系指射频干扰(RFI)和电磁干扰(EFI)以及其它各种高频干扰。马达的运行、继电器的动作、马达控制器的工作、广播发射、微波辐射、以及电气风暴等,都会引起线噪声干扰。 6. 频率偏移(Frequency Variation):系指市电频率的变化超过3Hz以上。这主要由应急发电机的不稳定运行,或由频率不稳定的电源供电所致。 7. 持续低电压(Brownout):指市电电压有效值低于额定值,并且持续较长时间。其产生原因包括:大型设备启动和应用、主电力线切换、启动大型电动机、线路过载(我们国家的很多地区存在这个问题)。 8. 市电中断(Power Fail):即我们通常遇到的停电。其产生原因有:线路上的断路器跳闸、市电供应中断、电网故障。 三. UPS的分类 UPS已从60 年代的旋转发电机发展至今天的具有智能化程度的静止式全电子化电路,并且还在继续发展。目前,UPS一般均指静止式UPS,按其工作方式分类可分为后备式、在线互动式及在线式三大类。 1. 后备式UPS:在市电正常时直接由市电向负载供电,当市电超出其工作范围或停电时,通过转换开关转为电池逆变供电。其特点是:结构简单,体积小,成本低,但输入电压范围窄,输出电压稳定精度差,有切换时间,且输出波形一般为方波。原理图如下: 2. 在线互动式UPS:在市电正常时直接由市电向负载供电,当市电偏低或偏高时,通过UPS内部稳压线路稳压后输出,当市电异常或停电时,通过转换开关转为电池逆变供电。其特点是:有较宽的输入电压范围,噪音低,体积小等特点,但同样存在切换时间,但和一般后备UPS相比,这种机型保护功能较强,逆变器输出电压波形较好,一般为正弦波。原理图如下: 3. 在线式UPS在市电正常时,由市电进行整流提供直流电压给逆变器工作,由逆变器向负载提供交流电,在市电异常时,逆变器由电池提供能量,逆变器始终处于工作状态,保证无间断输出。其特点是,有极宽的输入电压范围,无切换时间且输出电压稳定精度高,特别适合对电源要求较高的场合,但是成本较高。目前,功率大于3KVA的UPS几乎都是在线式UPS。原理图如下: UPS按照输出容量大小划分为小容量3KVA以下,中小容量3KVA~10KVA,中大容量10KVA以上。 UPS按输入/输出方式可分为三类:单相输入/单相输出(简称单进单出)、三相输入/单相输出(简称三进单出)、三相输入/三相输出(简称三进三出)。 对于用户来说,三相供电其市电配电和负载配电容易,每一相都承当一部分负载电流,因而中、大功率UPS多采用三相输入/单相输出或三相输入/三相输出的供电方式。 后备式UPS主要是用来给单台PC机提供电源保护,具有体积小、价格低、操作简单的特点,非常适合家庭使用,所以,当你为家用电脑购买UPS时,请选购后备式的。 在线式UPS几乎可以解决所有的常见电力问题,在有市电时,功能为稳压和防止电力波动干扰,因为其功能较完善,所以其成本也随着性能的增强而上升,价格较后备式UPS贵很多。在线式UPS主要用于对电源要求非常严格的一些计算机设备、医疗器械等,,一般与多个外置蓄电池串接使用以延长供电时间,多为单位配置。 智能型UPS是当今UPS的一大发展趋势,随着UPS在网络系统上应用,网络管理者强调整个网络系统为保护对象,希望整个网络系统在供电系统出现故障时,仍然可以继续工作而不中断。因此UPS内部配置微处理器使之智能化是UPS的新趋势,UPS内部硬件与软件的结合,大幅度提高了UPS的功能,可以监控UPS的运行工作状态,如:UPS输出电压频率,电网电压频率、电池状态以及故障记录等。还可以通过软件对电池进行检测、自动放电充电,以及遥控开关机等。网络管理者就可以根据信息资料分析供电质量,依据实际情况采取相应的措施。当UPS检测出供电电网中断时,UPS自动切换到电池供电,在电池供电能力不足时立即通知服务器做关机的准备工作并在电池耗尽前自行关机。智能型UPS通过接口与计算机进行通讯,从而使网络管理员能够监控UPS,因此其管理软件的功能就显得极其重要。 什么是后备式UPS 平时处于蓄电池充电状态,在停电时逆变器紧急切换到工作状态,并将电池提供的直流电转变为稳定的交流电输出,后备式UPS也被称为离线式UPS。 后备式UPS存在2至10毫秒的时间切换,不适合于关键性供电场所。此外,后备式UPS一般只能持续供电几分钟到十几分钟。 后备式UPS电源的优点是:运行效率高、噪音低、价格相对便宜,主要适用于市电波动不大,对供电质量要求不高的场合。 什么是在线式UPS 在线式UPS:在线式UPS在工作时,首先将市电转化为直流电给UPS电池充电,同时逆变器(见提示)将此直流电逆变为交流电为负载供电,由于市电经过了交流到直流、再到交流的转换过程,所以市电中原有的干扰和脉冲电压成分已经过滤得非常干净,因此,由在线式UPS逆变出来的电压很稳定。由于逆变电路始终在工作,所以当停电时,UPS能马上将其存储的电能通过逆变器转化为交流电对负载进行供电,从而达到了输出电压零中断的切换目标。双变换也是指UPS的输出电压经过了两次交直流的互相转换过程。而高频则表示UPS内部工作在高频环境下。高频UPS的好处是体积小,重量轻,工作效率高,其坏处是抗过载抗冲击能力差。 什么是在线互动式UPS 在线互动式UPS:这是一种智能化的UPS,所谓在线互动式UPS,是指在输入市电正常时,UPS的逆变器处于反向工作(即整流工作状态),给电池组充电;在市电异常时逆变器立刻转为逆变工作状态,将电池组电能转换为交流电输出,因此在线互动式UPS也有转换时间。同后备式UPS相比,在线互动式UPS的保护功能较强,逆变器输出电压波形较好,一般为正弦波,而其最大的优点是具有较强的软件功能,可以方便地上网,进行UPS的远程控制和智能化管理。可自动侦测外部输入电压是否处于正常范围之内,如有偏差可由稳压电路升压或降压,提供比较稳定的正弦波输出电压。而且它与计算机之间可以通过数据接口(如RS-232串口)进行数据通讯,通过监控软件,用户可直接从电脑屏幕上监控电源及UPS状况,简化、方便管理工作,并可提高计算机系统的可靠性。这种UPS集中了后备式UPS效率高和在线式UPS供电质量高的优点,但其稳频特性能不是十分理想,不适合做常延时的UPS电源。
58赞·5,017浏览2017-09-24
UPS电源工作原理
UPS不间断电源立即转入电池逆变状态;为防止市电来回切换,只有当市电恢复到170~270V时, UPS才转入市电逆变状态。市电频率的侦测与控制侦测市电频率的目的是作为逆变锁相的依据,通过调整逆变的过零点调整逆变相位,使在市电状态下的逆变输出与市电输入基本同频率、同相位。市电开机时,UPS侦测输入市电的频率作为逆变输出的频率;电池状态下开机时,逆变输出的频率以上次输出的频率来设定。 当市电正常时,执行锁相,逆变频率先追市电频率,频率相同后再追踪相位,通过变动逆变频率完成逆变和市电同相位。锁相后,逆变和市电的相位差小于3度,频率误差小于0.01Hz。当市电频率超出47~53Hz范围时,UPS不执行锁相,立即转入电池逆变状态,只有当市电频率回复到48~52Hz时,UPS再执行锁相,并转入市电逆变状态。 三角波发生器CPU送出的38.4kHz方波,经由运算放大器组成的二分频电路后,变成19.2kHz的方波,再经积分器积分成三角波。标准正弦波发生器CPU送出以128点平均分割的模仿正弦波,经过二阶低通滤波器滤波后,生成标准正弦波。PWM信号标准正弦波与逆变输出电压的正弦波反馈信号进行比较,其结果被三角波切割,生成PWM信号。逆变电压调整CPU每16ms读取一次逆变电压值,并与设定的电压值进行比较,当差值高于10V时,CPU立即调整标准正弦波,从而调整PWM信号,使输出电压相应加减5V,以缩小差值;当差值低于10V时,CPU累积差值,当累积值达到30V时,CPU调整标准正弦波,使输出电压相应加减2V。 CPU的A/D读取CPU每半周期读一次电池电压、正负BUS电压和机内温度,每隔8个标准正弦波点读一次市电电压、逆变电压和逆变电流(在每个周期开始,CPU变更读点的初始位置,使每隔8个标准正弦波点读一次,通过128个点的A/D读取达到扫描效果,读取值存入RAM内)。
8赞·30,156浏览2019-09-22
拼多多,三联单控开关怎么接线正品低价,爆款1折起!
三联单控开关怎么接线一折起!全场满立减,买立送,惊喜价享不停!三联单控开关怎么接线新人领专属折扣
lp.pinoo.com广告
国内破壁机十大排行-京东品质家电,让家的感觉更好!
值得一看的破壁机相关信息推荐
国内破壁机十大排行,「京东家用电器」精致美感,匠心品质,更高性能,选京东家电,创幸福家庭!
m.jd.com广告
水瓶座男生心疼人有什么方式?
水瓶座的男生理性又强大,他们像一座山,沉默,成熟,睿智,却安静寡言。他们很少被外界因素动摇,始终坚持
18条回答·1,937人在看
对于女明星比较大胆的穿着,大家怎么看呢?
能怎么看!当然是从电视机里看了!又买不起去见面会的门票,所以只能隔着屏幕看看走在时尚最前沿的大佬们的
142条回答·1,950人在看
这款国产越野车比哈弗H9更硬派,回头率更高,为何却不受待见呢
提起国产硬派越野车,相信很多人都会想到哈弗H9,毕竟相比于普拉多、途乐、牧马人这些动辄四五十万的大佬,它是真正做到了让更多的人实现越野梦。而新上市的哈弗H9不仅配备了三把锁,还新增了坦克调头、蠕动模式
3,450人在看
性价比高的手机有哪些?求推荐
我推荐小米9和荣耀20i这两款性价比高的手机。1、小米9个人认为这款是非常对得起三千多一点价格的。首
57条回答·7,878人在看
李世民杀了10个侄子时,李渊说了一句话成预言,他说了什么?
在李世民杀了十个侄子后,李渊可谓是非常的气愤,于是便说下狠话:汝杀吾子孙,他日汝子孙亦复如此。果然,
35条回答·2,647人在看
英菲尼迪QX60怎么样?值得买吗?
英菲尼迪QX60是一款不错的车型,性价比也高,在预算合适的范围内是值得购买的。秉承英菲尼迪“以驾驶者
21条回答·2,922人在看
如果周星驰星爷有百家号,你觉得星爷的粉丝会不会是全中国第一?
我认为不一定,虽然周星驰算是粉丝基底很多的人了,但是现在也有很多同样值得尊重的演艺人也拥有很多的粉丝
75条回答·658人在看
什么沐浴露香味持久力好?
喵招
和我一起get生活创意小妙招吧!
关注
132,483播放
目前手机排名前十位的是哪些?
88条回答·464,540人在看
华为mate20pro怎么样?
37条回答·17,828人在看
正在加载
⑹ 锁相环工作原理
锁相环的工作原理:
1.压控振荡器的输出经过采集并分频;
2.和基准信号同时输入鉴相器;
3.鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;
4.控制VCO,使它的频率改变;
5.这样经过一个很短的时间,VCO的输出就会稳定于某一期望值。
锁相环可用来实现输出和输入两个信号之间的相位同步。当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。这时,压控振荡器按其固有频率fv进行自由振荡。当有频率为fR的参考信号输入时,uR和uv同时加到鉴相器进行鉴相。如果fR和fv相差不大,鉴相器对uR和uv进行鉴相的结果,输出一个与uR和uv的相位差成正比的误差电压ud,再经过环路滤波器滤去ud中的高频成分,输出一个控制电压uc,uc将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv=fR,环路锁定。环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。这时就称环路已被锁定。
⑺ 各位大神来帮忙啊!检测微弱信号的锁相放大器怎么做求方法 电路图啊!
这是曾经微弱信号检测方面做过的一道题,我无法给楼主电路图,因为早就搞没了,我能给楼主提供如下基本原理和信息,希望对你有帮助:
1.锁定放大器的本质。锁定放大器实际上是从微弱信号中检测一个单频(或极窄频)的相位和幅度的。说的干净利索点,锁定放大器就是一个单点的傅里叶变换。原理是产生一对正交的正弦信号,与输入信号相乘并积分,两路积分结果的幅度的2范数为输入信号的幅度,两路信号的幅度arctan可以算出这个信号在两个正交轴上的相位。
2.上面的是最最简单和基本的锁定放大器原理。实际上从理论上证明,如果两路正交信号是方波,那么可以得到更好的结果,从中国知网上可以搜到一大堆结果。另外,已经有了专门的用于锁定放大器的芯片,AD630(注意,不是AD603),非常好用,而且价格不贵,建议楼主尝试。
3.所谓的锁定放大器,不过就是模拟单点傅里叶变换而已,如果楼主有AD,甚至可以采用纯数字的方法实现整套系统,非常简单。欢迎楼主继续追问,祝楼主好运。
⑻ 锁相环是如何应用到超声波电源电路里去的要电路图呀方框图看不懂!
锁相环集成电路很多,网络搜搜就有了,要稳定,锁相环是你的第一选择
⑼ 锁相环电路的工作原理
使用锁相环就来是想让压控振荡器源VCO输出的频率、相位和要求的频率、相位一致。
VCO的输出和标准信号同时输入锁相环芯片,如果频率、相位不一致,就会有输出,这个输出经过低通滤波后才送给VCO,使VCO频率和相位和标准信号一致。
锁相环就象一个闭环系统,如果在范围内就能保证无差。
这是我的理解。
⑽ 画出数字式分频锁相环原理结构原理框图,试述各部分功能。
看对加盟店