① 超级电容保护电路(平衡电路)求教
可以使用BW6101超级电容模组专用保护芯片,BW6101超级电容内保护芯片是专门针对超级电容串联模组的电容单容体过压保护而设计的一款高性能、低价格芯片,此芯片应用简单,性能可靠,可以替换原有的TL431、XC61C及其它的分立元件方案,电路简单,外围器件小,电压精度高,是一款专门为超级电容保护而研发的专门芯片。
BW6101采用高精度内部电压基准,确保保护电压精度在1%以内,内置功率管可以提供大电流泄放能力,在没有外部扩流管的条件下,可以提供200mA的电流泄放能力,如果需要大电流泄放保护,可以采用外部增加扩流MOS管,最大泄流能力可以达到几安培甚至几十安培,满足大容量法拉电容模组保护要求。
BW6101采用SOT23-5封装,器件体积小,集成度高,外围器件少,可以满足高密度安装要求,极大地降低应用成本,提高了电路可靠性。
② 超级电容工作原理
超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(ElectrochemicalCapacitors),双电层电容器(ElectricalDoule-LayerCapacitor)、黄金电容、法拉电容,是从上世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。
电容分类
根据储能机理的不同可以分为一下两类:
双电层电容:是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙而产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中呈电中性,这便是双电层电容的充放电原理。
法拉第准电容:其理论模型是由Conway首先提出,是在电极表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH-、K+或Li+)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。
突出特点
(1)充电速度快,充电10秒~10分钟可达到其额定容量的95%以上;
(2)环使用寿命长,深度充放电循环使用次数可达1~50万次,没有“记忆效应”;
(3)大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%;
(4)功率密度高,可达300W/KG~5000W/KG,相当于电池的5~10倍;
(5)产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源;
(6)充放电线路简单,无需充电电池那样的充电电路,安全系数高,长期使用免维护;
(7)超低温特性好,温度范围宽-40℃~+70℃;
(8)检测方便,剩余电量可直接读出;
(9)容量范围通常0.1F--1000F。
③ 直流电给超级电容充电电路图
用恒流源,先恒流再恒压。超级电容不要过压。
④ 我要给我的超级电容做一个输入限流电路,电路怎么弄呢
恒流源啊,用场管做,原理就是限制最大电流和过流保护电路差不多,不过我认为串个电阻最省事~
⑤ 请问那位高手有超级电容器的充电放电电路原理图!!
超级电容的充放电电路图很简单,加个二极管就可以,详聊 [email protected]
⑥ 请问超级电容均压电路怎么设计
用TL431加个扩流,才几毛钱。上datasheet5搜下TL431的PDF文档,一看就知道怎么弄了
精度绝对够
⑦ 急求超级电容的稳压电路。。
http://..com/question/142373759.html
请参考我在这里的回复
⑧ 超级电容串联模组如何实现均压保护,有什么芯片或者电路可以实现超级电容过压保护吗
BW6101超级电容保护芯片是专门针对超级电容串联模组的电容单体过压保护而设计的一款高性能、低价格芯片,此芯片应用简单,性能可靠,可以替换原有的TL431、XC61C及其它的分立元件方案,电路简单,外围器件小,电压精度高,是一款专门为超级电容保护而研发的专门芯片。
BW6101采用高精度内部电压基准,确保保护电压精度在1%以内,内置功率管可以提供大电流泄放能力,在没有外部扩流管的条件下,可以提供200mA的电流泄放能力,如果需要大电流泄放保护,可以采用外部增加扩流MOS管,最大泄流能力可以达到几安培甚至几十安培,满足大容量法拉电容模组保护要求。
BW6101采用SOT23-5封装,器件体积小,集成度高,外围器件少,可以满足高密度安装要求,极大地降低应用成本,提高了电路可靠性。
芯片简介:
lSOT23-5封装
l高精度电压基准:1%
l电压保护泄放能力强
l具有LED报警输出功能
l芯片体积小,便于高密度安装
l功耗极低,[email protected]
l可以实现对2.5V与2.7V的电容进行保护
⑨ 超级电容相当于一个电池,为何还要加DC/DC变换电路
DC/DC变换电路的作用有升压、降压、反相和稳压,超级电容最多只能起到稳压的作用,而且随着电流的输出,超级电容储存的电荷量会逐渐减少,电压也会逐渐下降,DC/DC变换电路可以在超级电容电压出现相当程度下降的情况下仍然保持电压的稳定。
⑩ 请问超级电容放电电路原理是怎样的
1.超级电容器比表面积加大
传统电容,100年前就发明了,电容是靠比表面积存储电荷,其优点是可无数次充放电,而且不发热。储电量的大小由其内部比表面积大小而决定。超级电容器,就是在研发出新材料的基础上,尽可能地扩大比表面积,使储电量大幅增加。
2.超级电容器储电材料结构内并
电池的优点是储电量大,由电能转化成化学能,再转化成电能释放出来,其比容量比传统电容高得多。超级电容,在结构上实现了电池和传统电容的内并,实现了电池和电容的优点兼备。
3.超级电容器性能优势
安全稳定
超级电容器,充满电后用射钉枪打,使其短路,任何反应都没有;放在火上烧,即使不锈钢外壳烧红,也不会发生爆炸。
充电速度快
超级电容器,可用1500A,甚至3000A的大电流充电,单块充满电只要几秒钟,上百块串联在一起充电,6分钟可达90%以上。
功率密度高
可达300W/KG~5000W/KG,相当于电池的5~10倍。
能量转换效率高
能量转换过程损失小,大电流能量循环效率≥90%。
超低温特性好
可在摄氏零下30℃的环境中工作。
超级电容器,与传统电容器相比,首先,在研发出新材料的基础上尽可能地扩大比表面积,使存储的电量大幅增加;其次,高能镍碳超级电容器在正负极的材料结构上获突破,其比功率比传统电容高得多;另外,超级电容在结构上实现了电池和传统电容的内并,实现了电池和电容的优点兼备。与传统电容和传统动力电池相比,超级电容器和以其为基础生产的动力电源产品具有能量密度大、功率密度高、充放电效率高、温度适应性好、循环寿命长、安全环保、性价比高等技术优势,实现产业化之后将可以有效解决目前电动汽车动力电源技术瓶颈问题。南京绿索超级电容025.68251033,南京江宁开发区秣周路88号祖堂工业园.