1. 模拟电路分析
常见模拟电路分析 - 第一专题 半导体器件的基础知识 第一专题 半导体器件的基础知识 7.1 半导体二极管 半导体基础知识 导体:自然界中很容易导电的物质...
2. 模拟电路还有学习的必要没有,有哪些入门的书
刚好我的专业集成电路。跟你这么说吧,模拟电路很有必要学,但是模拟电路入门很难,很多人要学2年多才算入了门。你说的也很对,模拟电路学好了对数字电路的理解更有帮助,做数字电路甚至可以不用接触电路,用代码来实现电路功能。但是模拟电路是不可能被淘汰的,数字电路最后都是为模拟电路服务,因为所有你能看到、听到、感触到的都是模拟电路提供的。模拟电路入门的书有拉扎维的《模拟COMS集成电路设计》和艾伦的《COMS模拟集成电路设计》,前者更偏基础些
3. 电路与模拟电子技术都讲些什么的啊简单的给我说下
电路与模拟电子技术主要讲述的内容如下:
1、直流电路(电路原理、电路定律定理、欧姆内定律、基容尔霍定律)
2、电路的暂态过程(储能元件、RC电路)
3、交流电路(正弦交流电路、正弦稳态)
4、供电知识(三相电源、负载、交流功率、电力系统)
5、变压器和此路
6、电气控制(低压电器、电机控制)
7、半导体器件(半导体基础、二极管、三极管、场效应管)
8、基本放大电路(放大电路的工作原理、静态分析、动态分析、多级放大电路、功率放大电路)
9、运算放大器(反馈、基本运算放大电路、频率分析)
10、直流稳压电源(线性稳压电源、开关稳压电源)
详细的内容您可以参考西安交大邱关源的《电路》、李翰逊的《电路分析》、童诗白的《模拟电子技术基础》、康华光的《电子技术基础—模拟篇》等
4. 比较专业的解释一下高频模拟电路,低频模拟电路和数字电路
首先关于数电和模电:先一句话概括模电 就是处理模拟信号的电路,数电 就是处理数字信号的电路。
由自然界 产生的信号 ,基本是模拟信号(比如我们听到一段声音,看到的一段图像),他是时变信号,这种信号在他的度量连续范围内,可以取得 任意值。
而数字信号也是时变信号,但他在任意时刻只呈现两种离散值(可以定义为"0"和"1",,或者"真"和"假",或者"开","关"等等任意定义)中的 一个值!
然而数字系统的原始输入并不是刚好是 0,1或者 真、假 这样的逻辑输入。而是把真实模拟信号量化。也就是规定一定范围的信号为“0”,规定一段信号的范围为“1”,即 称为划定了门限。
这样把模拟量转化成逻辑量,按一定编码规则记录了真实的模拟信息。
所以数字电路电路的本质其实就是 开关电路 因为用 开和关 就可以表示两个逻辑信号。数电的最基本器件——门电路,就是由开关电路组成的。
所以数电与模电相比的主要优势在:
1.数字系统更易于设计:因为开关电路不必考虑 精确的电流电压大小值,只考虑高低也就是范围。
2.精度高,抗干扰性强:信号数字化保存之后,精度不会损失。比真实模拟信号好保存。
3.可编程性好:模拟电路也可编程,但不用想也知道会多复杂。。。
4.集成度更高:开关电路比 千遍万化的模拟电路更容易集成化,没有那么多电容、电感等元件 ,主要有 CMOS晶体管组成,集成成本低。易于保存。
同样数电有明显缺点:
1.现实世界 主要是模拟量;
2.处理数字信号花费时间:要采样、量化、编码。。。。
经过以上分析已经能够发现一个问题了,那就是
一个数字系统输入是真实模拟信号,同样人在接受数字系统的输出信号 也只能识别经过解码还原出来模拟的信号。
其实这输入和输出的模拟信号也不是真正的原始真实世界的信号 是必须经过加工,处理了的模拟信号。简单说模拟信号也必须满足一定条件才能 进行数模 、模数转换。
所以事实证明 不管数字电路如何先进 ,模拟电路的作用很难,甚至不可能被相应的数字电路所替代!
关于高频和低频:
首先电路设计的高频和无线电通信里划分的那个高频电磁波(HF波段)是两码事!
为什么电路里要分高频,低频? 因为:
1.高频时半导体元件元件特性会与低频时候发生改变:高频信号下,半导体的PN结形成空间电荷区里,空间电荷因为PN结外加电压变化而快速变化,引起充放电效应明显, 即产生了在低频下可忽视的PN结电容效应,直接导致电路发生了改变,低频电路的晶体管电路模型不再适用。
2.在高频时候,电子元件产生的噪声影响会加剧。高频和低频时的噪声类型也不同。模拟电路里噪声处理是非常重要的一环。
3.高频产生的电共振效应,即谐振现象,引出了有别于低频的电路设计方式。
4.元件寄生效应:类似PN结电容效应那样 频率搞到一定程度导线之间,导线和电路板之间,以及各元件之间,也会引起电容效应。同时高频产生磁场效应,使得 导线自身、各元件自身会产生寄生电感效应。
5.趋肤效应:当通过导体的电流频率升高,产生交变磁场,由洛伦茨作用产生了阻碍电流变化的感应电场,有磁场分布关系可以知道这个感应电场在导体中心最强,而趋于导体表面减弱。这导致了高频时导体电流只能在导体表面传播,交流电阻变大。
6.高频辐射效应:频率高到一定程度 由于能量辐射到空气中,电流减小,相当于高频电阻增加。
那么究竟什么是高频呢?电路里高于音频(20k)就是高频,他的上限是个什么范围呢?其实他没有确定的范围!
一种看法是 只要还能用集总参数,即 电“路”的方法来分析电路就仍然是高频。
也就是说他是一个相对的概念。
我们知道当电路的几何尺寸与信号的波长长度相当时
传统电路的集总参数电路定律(如欧姆定律等)就不再适用了,这时候要用麦克斯韦方程组的方法来分析电路。
但是,假如:对于 频率 3GHZ 的微波信号 (波长 = 光速/频率),波长为10毫米 。
如果把电路几何尺寸做的非常小,电路集成在不到10毫米的基片上 ,
使得电路几何尺寸任然可以远小于信号波长
那么我们仍然可以用 “路”的方法来分析电路。
所以"高频"在电路里是个模糊概念。
至于数字电路里 我已经揭示了 数字电路本质是开关电路 ,我们不用频率高低来划分,而用 开关 的速度来划分,即常听到 “高速、低速”数字电路的说法了。
但事实上高速数字电路与模拟高频电路确实存在知识的交叉点。
以上OVER!
补充问题回答:频率当然是电路所处理的信号频率了(电路里信号可以是电压也可以是电流形式,甚至电磁波的形式,具体看什么样的电路啦)
总之电路设计的高频就是20khz以上的信号,至于上限范围是没有确定义,是相对的概念,所以高频的范围很大的。
无线电波里高频 商业划分的 HF波段: 3M-30M HZ 的电磁波
5. 模拟电路在生活中怎么应用的
模拟电路肯定已近在生活工作中被广泛地使用了!至于怎么应用的,应该说各有不同,例如为了让计算机的CPU工作就要给它一个直流稳压电源,这就需要稳压电路的设计,这就是一个模拟电路在生活中的应用了。再有手机充电也是类似的模拟电路。
在教科书关于模拟电路的,基本上都是关于放大的,这几乎完全是由于三极管或MOSFET等三端器件的特性决定的,其实放大也不过就是利用了三极管等IV特性曲线中具有大致恒流的特性,并以此来实现信号电压的放大功能,即使是功率放大也是基于于此。
毫无疑义,二端器件,例如电阻电容等是无法实行像三极管的放大功能的,所以只有三端器件利用三极管的基极或MOSFET栅极,具有的控制发射极或源极电流的能力实现了放大功能,而且只是利用了恒流源的特性。
既然三极管等三端器件具有放大功能,如何使其输出的电压稳定,则必定会是个问题,所以通过负反馈作用来稳定输出电压,就是模拟电路的另一个重要内容了,实施上放大和负反馈总是联系在一起的。没有负反馈就不会令输出电压稳定。这也就意味着模拟电路谈论的就是放大和负反馈。
对于刚接触模拟电路的学生来说,无法理解放大电路到底有什么用,也许只有类似收音机之类的电器可以令人感到放大电路的作用,即将无线电信号通过模拟电路的放大并输出至喇叭来发生声音。其实CPU的电源同样是一个放大电路,它是一个将放大和负反馈完美结合在一起的经典的模拟放大电路,能够理解这一点,对于其他的日常生活中的电子电器也就不难理解了。
6. 模拟电路该怎么分析
(1) 首先基本元件的特性要清楚 ,常见的电阻、电容、电感、二极管、三极专管、运放 等等属
(2) 然后学习每个元件本身的基本电路以及在电路中所起到的作用,比如电阻有串并联、混连,可用于分压、限流 等。
电容有串并联,在电路中可以用于耦合、去耦合、旁路、滤波等
电感有串并联,在电路中可以用于滤波
二极管单向导电,可作为整流、开关、限幅
三极管有放大和开关两种作用,基本电路:共基共射共集
运放可以做成比较电路、运算电路
(3) 掌握了每个元件的特性,就要把各个元件组合起来,其实每个电路已经是多种元件的组合了,比如三极管电路肯定有电阻用来限流或者作直流偏置,运放的运算电路肯定有电阻或电容存在
复杂电路都是有很多个单元电路组成的,必须要清楚各个单元电路的组成以及作用,才能够清楚的分析复杂电路的各部分以及整个电路的功能,多看电路、多做题、多作试验,要注重分析过程,这就是途径