导航:首页 > 电器电路 > 量子门电路

量子门电路

发布时间:2021-02-16 10:11:38

『壹』 与哪些电路设计指标与evm有关

从大方向讲
首先要了解等比例缩小定律,摩尔定律就是基于这个定律提出的。集成电路最小单元——晶体管尺寸按照宽长比等比例的缩小,同时,电压电流等比例的降低,这样电路就的功耗就会按照电压降低比例的平方倍降低。当然这个是有极限的,从0.35um到0.18um,再到90nm,再到现在的32nm,就是尺寸缩小的过程,但是,这个物理的尺寸是有极限的,因为尺寸越小,可以按照纳米来衡量的时候,量子效应就会非常明显,成为继续缩小的瓶颈。
门级延迟主要是因为信号传输的过程中每经过一个门(随便什么门,与门,或门等等),都会带来相应的延迟,一个两个没什么特别的影响,但是一个系统的门电路,门的数量天文数字,累积效应十分可观,甚至可能是电路功能改变。在设计时,通过卡诺图化简,而不是单纯的等式化简,卡诺图可以直观的增加必要的冗余项来减小门电路信号延迟。
电路设计方面,模块分布必须合理,这样布线才能尽可能的短,如果线太长也会带来不必要延迟,从而降低速度。
具体问题要具体分析,不像高中数学所谓的通法,能解决所有问题,这里要的是优化,不是所有问题都能通过一种方法来解决的。
简单的说了一下,每一块都可以展开讲,具体的还是找专业人士啦。工艺的还可以问问我,呵呵

『贰』 什么叫做量子技术

【简介抄】

量子袭技术是建立在量子力学原理的基础上,结合了量子生物学、药理学和生命信息学,利用微观状态的电子波动、辐射、能量等形式,对机体进行综合、系统、全面、发展性地预防、调节、抗衰老、治疗、康复、排毒的量子医学技术。Quten量子能(澳州)研究中心是利用量子医学研究人体抗衰技术世界领先机构之一。量子医学是在现代科学,特别是现代物理学和现代生物医学的影响和渗透下萌发而出的。早在1944年,奥地利物理学家薛定谔在《生命是什么》一书中,就试图把量子力学、热力学和生命科学的研究结合起来。

【量子技术的定义】:

现代物理学解释万物在微观世界皆呈现“波粒二象性”,一切物质在微观世界均呈现高频振动波状态,由于共振频率不同而形成了不同的物质。量子植入技术是许昌百昌纳米科技有限公司利用BCQI-量子先驱者号通过“声、光、电、磁”对产品进行量子能量植入,通过舱内“量子能量波频”使物质在原有频率基础上额外驻载一层能量频率,植入的产品发生分子排列顺序的变化,植入后产品可携带量子高频振动能量场。

『叁』 量子计算机至今热了30年,为何至今还没有实现


我们使用机器学习将量子电路翻译或编译成特定于特定量子计算机的最佳短等效电路。直到最近,我们还在经典计算机上使用机器学习方法来搜索量子程序的简化版本。现在,在最近的一次突破中,我们设计了一种方法,使用现有的量子计算机来编译它们自己的量子算法。这将避免在经典计算机上模拟量子动力学所需的大量计算开销。

由于这种方法产生的算法比现有的算法要短,因此可以减少噪声的影响。这种机器学习方法还可以以特定于算法和硬件平台的方式补偿错误。例如,它可能会发现一个量子位元比另一个量子位元的噪声小,因此算法优先使用更好的量子位元。在这种情况下,机器学习创建一个通用算法来计算计算机上分配的任务,使用最少的计算资源和最少的逻辑门。优化后,算法运行时间更长。

这种方法已经在有限的量子计算机上运行,现在公众可以在云上使用它。它还利用了量子计算机的优势,可以在未来设想的更大的量子计算机上对大型问题扩展算法。

『肆』 谁知道量子计算机的基础知识呀

量子计算机,顾名思义,就是实现量子计算的机器。要说清楚量子计算,首先看经典计算。经典计算机从物理上可以被描述为对输入信号序列按一定算法进行变换的机器,其算法由计算机的内部逻辑电路来实现。经典计算机具有如下特点:

(1)其输入态和输出态都是经典信号,用量子力学的语言来描述,也即是:其输入态和输出态都是某一力学量的本征态。如输入二进制序列0110110,用量子记号,即|0110110>。所有的输入态均相互正交。对经典计算机不可能输入如下叠加态:

C1|0110110 >+ C2|1001001>。

(2)经典计算机内部的每一步变换都将正交态演化为正交态,而一般的量子变换没有这个性质,因此,经典计算机中的变换(或计算)只对应一类特殊集。

相应于经典计算机的以上两个限制,量子计算机分别作了推广。量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统(称为量子比特),量子计算机的变换(即量子计算)包括所有可能的么正变换。因此量子计算机的特点为[1]:

[1]量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交;

[2]量子计算机中的变换为所有可能的么正变换。得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。

由此可见,量子计算对经典计算作了极大的扩充,经典计算是一类特殊的量子计算。量子计算最本质的特征为量子叠加性和相干性。量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算机的输出结果。这种计算称为量子并行计算。量子并行处理大大提高了量子计算机的效率,使得其可以完成经典计算机无法完成的工作,如一个很大的自然数的因子分解(后面将叙及)。量子相干性在所有的量子超快速算法中得到了本质性的利用[2]。

量子计算机的概念源于对可逆计算机的研究,而研究可逆计算机是为了克服计算机中的能耗问题。早在六七十年代,人们就发现,能耗会导致计算机芯片的发热,影响芯片的集成度,从而限制了计算机的运行速度。Landauer[3]最早考虑了这个问题,他考察了能耗的来源,指出:能耗产生于计算过程中的不可逆操作。例如,对两比待的异或操作,因为只有一比特的输出,这一过程损失了一个自由度,因此是不可逆的,按照热力学,必然会产生一定的热量。但这种不可逆性是不是不可避免的呢?事实上,只要对异或门的操作如图1所示的简单改进,即保留一个无用的比特,该操作就变为可逆的。因此物理原理并没有限制能耗的下限,消除能耗的关键是将不可逆操作改造为可逆操作(见图1)。

图1 不可逆异或门改进为可逆异或门

Bennett[4]后来更严格地考虑了此问题,并证明了,所有经典不可逆的计算机都可以改造为可逆计算机,而不影响其计算能力。

经典计算机实际上就是一个通用图灵机。通用图灵机是计算机的抽象数学模型,它由两部分构成:

[1]具有无限多个存储单元的记录带,每个存储单元内容的变化是有限的,通常用二进制的“O”和“1”来表示;

[2]一个具有有限内态的读写头,每步操作中读写头可以在记录带上左移或右移一格或不动。图灵机在操作中,读写头根据其内态和当前存储单元的内容,按既定的规则,改变其内态和存储单元的内容。并决定下一步读写头的移动方向。

上述图灵机的模型是不可逆的,例如,对如下图灵机操作“写存储单元--> 左移一格”,其逆就变成了“左移一格-->写存储单元”,该逆操作不再是一个有效的图灵机操作。但Bennett证明了一个基本结果:对所有不可逆的通用图灵机,都可以找到一个对应的可逆图灵机,使得两者具有完全相同的计算能力和计算效率。

因为计算机中的每步操作都可以改造为可逆操作,在量子力学中,它就可以用一个么正变换来代表。Benioff[5]最早用量子力学来描述可逆计算机。在量子可逆计算机中,比特的载体成为二能级的量子体系,体系处于|0>和|1>上,但不处于它们的叠加态。量子可逆计算机的研究,其核心任务为,对应于具体的计算,寻找合适的哈密顿量来描述。

早期的量子可逆计算机,实际上是用量子力学语言表述出来的经典计算机,它没有利用量子力学的本质特性,如量子叠加性和相干性。 Feymann首先指出[6],这些量子特性可能在未来的量子计算机中起本质作用,如用来模拟量子系统。Deutsch[7]找到一类问题,对该类问题,量子计算机存在多项式算法(多项式算法指运算完成的时间与输入二进制数据的长度,即比特的位数存在多项式关系),而经典计算机则需要指数算法。但最具轰动性的结果却是Shor给出的关于大数因子分解的量子多项式算法[8](见第三节),因为此问题在经典公钥体系中有重要应用。Shor的发现掀起了研究量子计算机的热潮,从此后,量子计算机的发展日新月异。

二、量子计算机的构造及实验方案

正如经典计算机建立在通用图灵机基础之上,量子计算机亦可建立在量子图灵机基础上。量子图灵机可类比于经典计算机的概率运算。前一节提到的通用图灵机的操作是完全确定性的,用q代表当前读写头的状态,s代表当前存储单元内容,d取值为L,R,N,分别代表读写头左移、右移或不动,则在确定性算法中,当q,s给定时,下一步的状态q',s'及读写头的运动d完全确定。我们也可以考虑概率算法,即当q,s给定时,图灵机以一定的概率(q,s,q,s”,d)变换到状态q',s'及实行运动d。概率函数(q,s,q',s',d)为取值[0,1]的实数,它完全决定了概率图灵机的性质。经典计算机理论证明,对解决某些问题,慨率算法比确定性算法更为有效。

量子图灵机非常类似于上面描述的经典概率图灵机,现在q,s,q',s'相应地变成了量子态,而慨率函数(q,s,q',s',d)则变成了取值为复数的概率振幅函数x(q,s,q',s',d),量子图灵机的性质由概率振幅函数确定。正因为现在的运算结果不再按概率叠加,而是按概率振幅叠加,所以量子相干性在量子图灵机中起本质性的作用,这是实现量子并行计算的关键。

量子计算机可以等效为一个量子图灵机。但量子图灵机是一个抽象的数学模型,如何在物理上构造出量子计算机呢?理论上已证明[9],量子图灵机可以等价为一个量子逻辑电路,因此可以通过一些量子逻辑门的组合来构成量子计算机。量子逻辑门按其输入比特的个数可分为单比特、二比特、及三比特逻辑门等。

因为量子逻辑门是可逆的,所以其输入和输出比特数相等。量子逻辑门对输入比特进行一个确定的幺正变换,得到输出比特。Deutsch[10]最早考虑了用量子逻辑门来为造计算机的问题,他发现,几乎所有的三比特量子逻辑门都是通用逻辑门。通用逻辑门的含义是指,通过该逻辑门的级联,可以以任意精度逼近任何一个么正操作。后来不少人发展了Deutsch的结果,最后Deutsch和Lloyd各自独立地证明[11],几乎所有的二比特量子逻辑门都是通用的,这里“几乎”是指,二比特通用量子逻辑门的集合是所有二比特逻辑门的集合的一个稠密子集。

实验上通常用一些具体的量子逻辑门来构造计算机。Barenco等人[12]证明,一个二比特的异或门和对一比特进行任意操作的门可构成一个通用量子门集。相对来说,单比特逻辑门在实验上比较容易实现,现在的不少实验方案都集中干制造量子异或门。量子异或门和经典异或门非常类似,它有2个输入比待:控制比特和受控比特。当控制比特处于|1>态,即在上能级时,受控比特态发生反转。用记号C12代表量子异或操作,其中1,2分别代表控制和受控比特,则有

其中n1,n2取值 0或 1,表示模2加。已有的用来实现量子异或门的方案包括:利用原子和光腔的相互作用[13];利用冷阱束缚离子[14];或利用电子或核自旋共振[15]。在已实现的方案中,以冷阱束缚离子方案最为成功[16],我们稍详细地介绍这一方案。

在冷阱束缚离子计算机中,N个离子经激光冷却后,束缚到一个线性势阱或环形势阱中,每个离子的两个内态作为量子比特的载体。离子受到势阱束缚势和相互间库仑排斥势的作用,在平衡位置附近作微小振动,可用简正模描述,量子化后即用声子描述。其中频率最低的模称为质心模。每个离子可以用不同的激光束来控制,在激光束的作用下,离子内态和离子集体振动的元激发——声子发生相互耦合。通过声子传递相互作用,可实现任意两个比特之间的异或操作。类似的想法还可以用来实现多比特的量子逻辑门,但目前只有二比特的量子逻辑门得到了具体的实验证实。

原子光腔方案也有实验报道。原子和光腔的相互作用是量子光学中比较成熟的实验,但此方案的弱点是不易级联,难以形成复杂的逻辑网络。Gershenfeld等最近指出[15],利用宏观样品的自旋共振,经适当操作,也可以用来实现量子逻辑门,这种方案稳定性好,在理论上被认为很有前途。实验上,今年初美国的MIT和Los Alamos小组已实现了包含 3个量子比特的自旋系统,并成功地执行了1十l=2的运算。

三、量子计算机的优越性及其应用

与经典计算机相比,量子计算机最重要的优越性体现在量子并行计算上。因为量子并行处理,一些利用经典计算机只存在指数算法的问题,利用量子计算机却存在量子多项式算法,这方面最著名的一个例子当推Shor在1994年给出的关于大数因子分解的量子多项式算法。

大数的因子分解是数学中的一个传统难题,现在人们普遍相信,大数的因子分解不存在经典的多项式算法,这一结果在密码学中有重要应用。密码学的一个新的方向是实现公钥体制。公钥体制中,加密密钥公开,可以像电话号码一样通知对方,而脱密密钥是保密的,这样仍然可以实现保密通信。公银体制的核心在于,从加密密钥不能导致脱密密钥,即它们之间不存在有效的算法。最著名的一个公钥系统由Rivet,Shamir和 Adleman提出,它的安全性就基于大数因子分解,因为对于经典计算机,后者不存在有效的多项式算法。但Shor却证明,利用量子计算机,可以在多项式时间内将大数分解,这一结果向RSA公钥系统的安全性提出严重挑战。

Shor的算法的主要思想为,首先利用数论中的一些定理,将大数的因子分解转化为求一个函数的周期问题,而后者可以用量子快速傅里叶变换(FFT)在多项式步骤内完成。

除了进行一些超快速计算外,量子计算机另一方面的重要用途是用来模拟量子系统。早在1982年,Feymann就猜测,量子计算机可以用来模拟一切局域量子系统,这一猜想,在1996年由 Lloyd证明为正确的[17]。首先得指出,模拟量子系统是经典计算机无法胜任的工作。作为一个简单的例子,考虑由40个自旋为1/2的粒子构成的一个量子系统,利用经典计算机来模拟,至少需要内存为240=106M,而计算其时间演化,就需要求一个 240 X 24O维矩阵的指数,这一般来讲,是无法完成的。而利用量子计算机,上述问题就变得轻而易举,只需要40个量子比特,就足以用来模拟。Lloyd进一步指出,大约需要几百至几千个量子比特,即可精确地模拟一些具有连续变量的量子系统,例如格点规范理论和一些量子引力模拟。这些结果表明,模拟量子系统的演化,很可能成为量子计算机的一个主要用途。

四、量子计算的困难及其克服途径

量子计算的优越性主要体现在量子并行处理上,无论是量子并行计算还是量子模拟,都本质性地利用了量子相干性。失去了量子相干性,量子计算的优越性就消失殆尽。但不幸的是,在实际系统中,量子相干性却很难保持。消相干(即量子相干性的衰减)主要源于系统和外界环境的耦合。因为在量子计算机中,执行运算的量子比特不是一个孤立系统,它会与外部环境发生相互作用,其作用结果即导致消相干。Uruh定量分析了消相干效应,结果表明,量子相干性的指数衰减不可避免。Unruh的分析揭示了消相干的严重性,这一结果无疑是对量子计算机的信奉者的当头一棒。

因为量子计算机本质性地利用了量子相干性,相干性的丢失就会导致运算结果出错,这就是量子错误。除了消相干会不可避免地导致量子错误外,其他一些技术原因,例如量子门操作中的误差等,也会导致量子错误。因此,现在的关键问题就变成,在门操作和量子存储都有可能出错的前提下,如何进行可靠的量子运算?

Shor在此方向取得一个本质性的进展,这就是量子纠错的思想[19]。量子纠错是经典纠错码的量子类比。在三四十年代,经典计算机刚提出时,也曾遇到类似的法难。当时就有人指出,计算机中,如果任一步门操作或存储发生错误,就会导致最后的运算结果面目全非,而在实际中,随机的出错总是不可避免的。经典计算机解决此问题,采取的是冗余编码方案。我们以最简单的重复码来说明其编码思想。如果输入1比特信号0,现在可通过引入冗余度将其编码为3比特信号000,如果在存储中,3比特中任一比特发生错误,如变成001,则可以通过比较这3比特信号,按照少数服从多数的原则,找到出错的比特,并将其纠正到正确信号000。这样虽然在操作中有一定的错误率。计算机仍然能进行可靠运算。Shor的编码就是这种思想的量子类比,但在量子情况下,问题变得复杂得多。量子运算不再限制于态 |0>和|1>,而是二维态空间中的所有态,因此量子错误的自由度也就大得多。另一个更本质的原因为,量子力学中有个著名的量子态不可克隆定理[20](我们将另撰文介绍),它指出,对一个任意的量子态进行复制是不可能的。因此对1个单比特输入态|>,无法将其编码为3比特输入态|>|>|>。这些困难表明,任何经典码的简单类比,在量子力学中是行不通的。但Shor却给出了一个完全新颖的编码,他利用9个量子比特来编码1比特信息,通过此编码,可纠正9个比特中任一比特所有可能的量子错误。(关于量子纠错更进一步的介绍,可参看后续文章(《量子编码》)。 Shor的结果极其振奋人心,在此基础上,各种量子纠错码接二连三地被提出。最新的结果(尚未出版)表明,在量子计算机中,只要门操作和线路传输中的错误率低于一定的阈值,就可以进行任意精度的量子计算。这些结果显示出,在通往量子计算的征途上,已经不存在任何原则性的障碍。

『伍』 集成电路与量子力学有关吗

怎么可能与量子力学有关?!集成电路就是由无数个“与”“或”“非”门电路组成。上面的硬件包括晶体管、二极管、电容、电阻之类组成。比如二极管的作用就是单向导电。

『陆』 量子计算机跟电子计算机有什么不同

量子计算机抄是说用量子门电路控制量子位来进行计算的计算机,这跟现代计算机完全不同,量子状态可以叠加的,比如说量子的两个状态0和1,第一个状态0的时候第二个可以是0也可以是1,有2的N次方个状态,所以速度远远高于现在的计算机 不过这个技术有电逆天,基本上可控核聚变那个难度,现在加拿大和美国领先,你可以看看量子物理史话挺好玩的,

『柒』 发明量子通信的目的是为了利用量子的三态来更好的实现加密功能,而能实现三种状态的三态门电路也可以啊

量子通信的发明是为了通讯,而且是加密性最好的通讯,也许还有个通讯的可靠性。
核心是通讯,加密是特性。

『捌』 量子通讯是如何进行的和量子计算机是怎么一回事

量子通讯是利用量子纠缠效应进行信息传递的一种新型的通讯方式。
量子离物传态(又称量子隐形传态)是这种新型的通讯方式的原理演示。由于量子纠缠代表的关联依赖于对两个纠缠的粒子之一测量什么,直接通过量子纠缠不能传递物体的全部信息。但是,我们却可以设想这样的量子通讯过程:将某物体待传递量子态的信息分成经典和量子两个部分,它们分别经由经典通道和量子通道传送给接收者。经典信息是发送者对原物进行某种测量而提取的,量子信息是发送者在测量中未提取的大量信息;接收者在获得这两种信息后,就可以制备出原来量子态的完全复制品。该过程中传送的仅仅是该物体的量子态,而不是该物体本身。发送者甚至可以对这个待传量子态一无所知,而接收者则能将他持有的粒子处于原物体的量子态上。
利用这种量子纠缠特性,Bennet和其他5位来自不同国家的科学家等在1993年提出了演示这种量子通讯的量子离物传态(Teleportation)方案:通过在经典信道中送2个比特的信息破坏空间某点的量子态,可以在空间不同点制备出一个相同的量子态. 要指出的是,通常的离物传态(Teleportation)描述了这样一种奇妙的、有点象科幻小说的场景:某人突然消失掉,而在远处莫明其妙地显现出来。 Bennet等人的量子离物传态方案具体描述如下:
设想Bob要将他持有的粒子B的未知量子态|u>=a|0>+b|1> 传给远方的持有粒子A 的Alice. 他可以操控他持有的粒子B和由BBO型量子纠缠源分发给来的粒子S。由于量子纠缠源产生了粒子A和粒子S的量子纠缠态|ERP>, Bob对粒子B和粒子S的联合测量结果(依赖于对A和S的4个Bell基的区分),会导致Alice持有的粒子A塌缩到一个与|u>相联系的状态|u’>=W|u> 上, 其中幺正变换W 完全由Bob对粒子A和粒子S的联合测量结果的2个比特经典信息决定,而与待传的未知量子态无关。 Bob将即己测到的结果,通过经典通道(打电话、发传真或 e-mail等)告诉Alice。远方的Alice 就知道粒子A已经塌缩到|u’>上.选取合适的么正变换W+ , Alice便可以将粒子A制备在|u>上了。
量子计算机
从原理上讲, 经典计算可以被描述为对输入信号序列按一定算法进行变换(逻辑门操作)的物理过程。基于经典比特的非0即1的确定特征,经典算法是通过经典计算机(或经典图灵机)的内部逻辑电路加以实现的.而量子计算,则是基于量子比特的既 |0> 又 |1>相干叠加特征,对可由量子叠加态描述的输入信号,根据量子的算法要求,进行叫做“量子逻辑门操作”的幺正变换. 这是一个被人为控制的、以输入态为初态的量子物理演化过程。对末态— 输出态进行量子测量,给出量子计算的结果. 顾名思义,所谓的量子计算机(quantum computer) 就是实现这种量子计算过程的机器。
量子计算机的概念最早源于二十世纪六、七十年代对克服能耗问题的可逆计算机的研究.计算机芯片的发热,影响芯片的集成度,从而大大限制了计算机的运行速度. Landauer 关于“能耗产生于计算过程中的不可逆操作”的发现表明,虽然物理原理并没有限制能耗的下限,但必须将不可逆操作改造为可逆操作,才能大大提高芯片的集成度。直观地说,当电路集成密度很大时,Δx很小时,Δp就会很大,电子不再被束缚,就会出现量子物理所描述的量子干涉效应,从而破坏传统计算机芯片的功能。对于现有的传统计算机技术,量子力学的限制似乎是一个不可逾越的障碍。只有量子力学中的幺正变换,才能真正地实现可逆操作。从理论观念的角度讲,量子计算的想法与美国著名物理学家R. Feynman “不可能用传统计算机全面模拟量子力学过程”的看法直接相关。在此基础上,1985年,英国牛津大学的D. Deutsch初步阐述了量子图灵机的概念,并且指出了量子图灵机可能比经典图灵机具有更强大的功能。1995年,Shor提出了大数因子化量子算法,并有其他人演示了量子计算在冷却离子系统中实现的可能性,量子计算机的研究才变成物理学家、计算机专家和数学家共同关心的交叉领域研究课题。
量子并行性是量子计算的关键所在。显而易见,描述有2个比特的量子计算机,需要4个系数数字;描述n个量子比特的量子计算机就需要2n个系数数字。例如,如果n等于50,那就需要大约1015个数来描述量子计算机的所有可能状态。虽然n增大时所有可能状态的数目将迅速变成一个很大的集合,但由于态叠加原理,量子计算机操作—幺正变换能够对处于叠加态的所有分量同时进行。这就是所谓的量子并行性。由于这一奇妙的内禀并行性,一台量子计算机仅仅靠一个处理器就能够很自然地同时进行非常多的运算。典型的量子计算有Shor的大数因子化和Grover的数据库量子搜索。

『玖』 中国半导体量子芯片有什么突破

从中国科学技术大学获悉,该校郭光灿院士团队近期在半导体量子芯片研制方面再获新进展,创新性地制备了半导体六量子点芯片,在国际上首次实现了半导体体系中的三量子比特逻辑门操控,为未来研制集成化半导体量子芯片迈出坚实一步。国际应用物理学权威期刊《物理评论应用》日前发表了该成果。

《物理评论应用》审稿人认为,这项工作是半导体量子点量子计算方向的一个重要进展,详细、清楚地展示了高水平的实验技术,将引起学界对该领域极高的研究热情。

这是好事。

『拾』 什么是量子代价

我是学物理的没听说过这个量子代价,也看到有人用,词典也没有,可能是量子和代价两个词的意思吧,反正现在有太多人自己造词,就连词典都没有。量子:是一个物理量如果有最小的单元而不可连续的分割,就说这个物理量是量子化的,并把最小的单元称为量子。代价:泛指为达到某种目的所耗费的物质、精力,或所作出的牺牲。

阅读全文

与量子门电路相关的资料

热点内容
苹果手机wifi部件怎么维修 浏览:846
闭合电路的一部分导体 浏览:693
有锁机在国内保修吗 浏览:847
K11家居 浏览:111
家用柔性防水成分是什么 浏览:341
cad家居模板 浏览:455
朗动导航黑屏维修多久 浏览:93
厕所门百叶窗坏了怎么维修 浏览:716
雨具品牌保修 浏览:811
华为智能手表保修时间 浏览:965
电路板电感 浏览:231
加减法电路 浏览:916
免漆家具板选什么颜色高贵大气 浏览:8
苹果保修10年是真的吗 浏览:926
国家电网网上报名注册怎么办 浏览:665
维修基金为什么没有发票 浏览:144
铃木王电路 浏览:749
心柏家具官网 浏览:53
广信手机保修多久 浏览:427
家具厂电销怎么做 浏览:943