导航:首页 > 电器电路 > 电池充放电路

电池充放电路

发布时间:2021-02-15 08:16:35

『壹』 充电电池充放电难题

笔记本电池14.2-2200mah/32W是什来么含义
---你的电自池电压是14.2V,电池容量是2200mAH,表示你的电池以2200mA的电流放电可以放1小时,32W是你电池的功率(14.2x2.2=31.24W)

4.6V-1000mA的适配器给每节电池充电,请问可以吗?
---可以的,单节单节地充,就是有点麻烦

如果可以每充一节电池需要多长时间?
---如果实际充电电流达到1000mA,那么要充2.2小时

如果不可以那有要什么样的充电器呢?如果4节电池串联在一起充,又要什么样的冲电器呢?
----4节串在一起充,要用输出电压是17V的充电器,输出电流是800~1000mA.

如果我用这冲电池制作一个可充电LED台灯,可以吗?可以的话该选择多少发光二极管呢?
----可以,你用4粒串联做一组,再用5组并起来。 每组要串一只14O欧1/2W的电阻。

『贰』 请问充电电池放电方法

可充电电池:原理,隐患,及安全充电方法的应用从来没有像现在这么广泛。
电池正在变得更小、更轻,在单位体积内容纳更多能量。电池发展的主要动力来自便携设备(例如移动电话、膝上电脑、摄录像机和MP3播放器)的快速发展。这篇关于充电方式和现代电池技术的应用笔记将帮助您更好了解这些便携设备中使用的电池。
电池的定义

如果电池仅定义为能量储存系统,则其有可能包括飞轮和时钟发条等元件。在现代技术中电池的更精确定义为:能够产生电能的便携、独立化学系统。

一次电池,又叫不可充电电池或原电池,从电池单向化学反应中产生电能。原电池放电导致电池化学成分永久和不可逆的改变。但可充电电池,又叫二次电池,可在应用中放电,也可由充电器充电。所以,二次电池储存能量,而不是产生能量。

充电和放电电流(安培)通常用电池额定容量的倍数表示,叫做充电速率(C-rate)。例如,对于额定为1安时(Ah)的电池,C/10的放电电流等于1Ah/10=100mA。电池的额定容量(Ah或mAh)是电池在特定的条件下完全放电所能储存(产生)的电能。因此,电池的总能量等于容量乘以电池电压,单位为瓦时。

电池性能的测试

电池的化学成分和设计共同限制了输出电流。若没有实际因素限制性能,电池瞬时可以输出无穷大电流。限制电池输出电流的主要因素是基本化学反应速率、电池设计,以及进行化学反应的区域。某些电池本身具有产生大电流的能力。如镍镉电池短路电流可大到足以融化金属和引起火灾。其它一些电池只能产生弱电流。电池中所有化学和机械总效应可用一个数学因数表示,即等效内阻。降低内阻可获得更大电流。

没有电池能永久储存能量。电池不可避免要进行化学反应并缓慢退化,导致储存电量减少。电池容量与重量(或体积)之比称为电池的能量密度。高能量密度意味着在给定体积和重量的电池中可存储更多能量。

下表给出了个人电脑和蜂窝电话中可充电电池的主要化学成分,以及其额定电压和能量密度(以瓦时每千克,或Wh/Kg表示)。

若一次和二次电池都能达到同样目的,为什么不总是选择二次电池呢?原因是二次电池有以下缺点:实际中,所有二次电池能量都会因自放电较快的损失;二次电池使用前必需充电。

电池充电

一个新的可充电电池或电池组(一个电池组中有几个电池)不能保证已充满电。事实上它们很可能已被完全放电。因此,首先要根据制造商提供的、与化学成分相关的指南,对电池/电池组充电。

每次充电要根据电池化学成分按顺序施加电压和电流。因此,充电器和充电算法需满足不同电池化学成分的不同要求。电池充电常用术语包括:用于NiCd和NiMH电池的恒流(CC),和用于锂离子和锂聚合物电池的恒流/恒压(CC/CV)(图1至6)。

如上所示,电池化学成分和充电技术不同,充电终止的判定条件也不同。

镍镉电池充电

在0.05°C至大于1°C的范围内对NiCd电池恒流充电。一些低成本充电器使用绝对温度终止充电。虽然简单、成本低,但这种充电终止方法不精确。更好的方法是通过检测电池充满时的电压跌落终止充电。对于充电速率为0.5°C或更高的NiCd电池,- V方法是最有效的。- V充电终止检测应与电池温度检测相结合,因为老化电池和不匹配电池可能减少 V。

通过检测温升速率(dT/dt)可以实现更精确的满充检测,这种满充检测比固定温度终止对电池更好。基于 T/dt和- V组合的充电终止方法可避免电池过充,延长电池寿命。

快速充电可改善充电效率。在1°C的充电速率下,效率可以接近1.1(91%),充满一个空电池的时间为1小时多一点。当以0.1°C充电时,效率便下降到1.4(71%),充电时间为14小时左右。

因为NiCd电池对电能接收程度接近100%,所以几乎所有的能量在充电开始的70%期间被吸收,而且电池保持不发热。超快速充电器利用该特点,在几分钟内将电池充到70%,以几C的电流充电而无热量产生。充到70%后,电池再以较低速率继续充电,直到电池充满。最后以0.02°C至0.1°C的涓流结束充电。

镍氢电池充电

尽管NiMH充电器与NiCd充电器类似,但是,NiMH充电器采用 T/dt方法终止充电,这是到目前NiMH电池充电的最好办法。NiMH电池充电结束时电压下降比较小,而对低充电速率(低于0.5°C,这取于温度)可能不出现电压下降。

新的NiMH电池会在充电周期内过早地出现错误峰值,这会导致充电器过早结束充电。此外,单用- V检测结束充电几乎肯定会出现过充,导致在电池失效前限制充放电次数。

似乎没有在所有条件下(新或旧,热或冷,全部或部分放电)都适用的NiMH电池的-dV/dt充电算法。因此,除非NiCd充电器使用了dT/dt方法终止充电,否则不能用NiCd充电器为NiMH电池充电。而且,因为NiMH电池不能很好的吸收过充,所以,涓流充电电流比NiCd电池小(约0.05°C)。

NiMH电池的慢充比较困难。因为以0.1°C至0.3°C的速率充电时,电压和温度的变化不能准确指示电池已充满。因此,慢速充电器必须依靠定时器来决定何时结束充电。以此,为保证NiMH电池充满,应以接近1°C的速率(或电池制造商指定速率)快速充电,同时监控电压( V=0)和温度(dT/dt)来确定何时结束充电。

锂离子和锂聚合物电池充电

镍基电池充电器限制电流,而锂离子电池充电器则需同时限制电压和电流。最初的锂离子电池充电电压限制在4.10V/节。电压越高意味着容量越大,现在可以通过增加化学添加剂实现4.20V电池电压。当前的锂离子电池一般充电到4.20V,容差为±0.05V/节。

当端电压达到电压阈值并且充电电流降至0.03°C(约Icharge的3%,参考图6)时表明电池已充满。多数充电器达到满充的时间约为3小时。尽管某些线性充电器声称Li+电池充电只需约一小时,但这类充电器通常在电池端电压达到4.2V时就终止充电,这种方法只能将电池充到其容量的70%。

较高的充电电流并不会使充电时间缩短太多。较高的充电电流能较快达到电压峰值,但是浮充需要较长时间。通常,浮充时间是初始充电时间的两倍。

锂离子电池保护

因为Li+电池过充或过放可能会导致爆炸并造成人员伤害,所以使用这类电池时,安全是主要关心的问题。因此,商用锂离子电池组通常包括象DS2720这样的保护电路(图7)。DS2720提供了可充电Li+电池所需的所有保护功能,如:在充电时保护电池、防止电路过流、通过限制电池的放电电压延长电池寿命。

DS2720IC使用外部开关元件,如低成本n沟道功率MOSFET,来控制充电和放电电流。内部9V的电荷泵为外部n沟道MOSFET提供高端驱动,与常见使用相同FET的低端保护电路相比具有更低的导通电阻。FET导通电阻实际上随电池放电而减少(见图8)。

DS2720稳压的高端n-FET驱动,即便在放电快结束时,都能保证低开关阻值。这将延长便携设备运行时间。监控电池过压/欠压,过流和过热;稳压电荷泵支持高端模式n型沟道MOSFET;集成电池选择功能;8字节可锁定用户EEPROM;64位唯一电子序列号;低功耗:工作15µA,静态1µA;提供8引脚MSPO微型封装;1-Wire数据通讯接口。

DS2720允许用户通过数据接口或专用输入控制外部FET,减少了可充电Li+电池系统中额外的功率开关控制。DS2720通过其1-Wire接口提供主机系统对状态和控制寄存器、测量寄存器,以及通用数据存储器的读写访问。每个器件都有一个工厂编程的64位唯一地址,允许主机系统单独寻址每个器件(图9)。

DS2720为电池信息存储提供两类存储器,及EEPROM和可锁定EEPROM。EEPROM是真正的非易失(NV)存储器,用来保存重要的电池数据,不会因电池过度放电、偶然短路或ESD事件丢失数据。可锁定EEPROM在锁定后相当于只读存储器(ROM),用于更安全地保存不再改变的电池数据。

保护模式

过压 如果在VDD检测的电池电压超过过压阈值VOV时间大于过压延迟时间tOVD,则DS2720关闭充电FET,并将保护寄存器的OV置位。在过压期间,放电通路保持开放。除非被另外保护条件锁定,当电池电压降到充电使能阈值VCE以下或由于放电导致VDD-VPLS>VOC时,充电FET被重新使能。

欠压 如果在VDD检测的电池电压低于欠压阈值VUV时间大于欠压延迟时间tUVD,则DS2720关闭充电和放电FET,并将保护寄存器的UV置位,使其进入休眠模式。当电池电压升到VUV以上和连接充电器后,IC打开充电和放电FET。

短路 如果在VDD检测的电池电压低于放电阈值VSC时间达到延迟时间tSCD,则DS2720关闭充电和放电FET,并将保护寄存器的DOC置位。除非PLS上的电压升至大于VDD-VOC,否则充电和放电FET不会导通。DS2720提供流经内部VDD至PLS电阻RTST的测试电流,当VDD升至大于VSC时上拉PLS。DS2720利用此测试电流检测有害低阻抗负载的移除。另外,测试电流还提供了流经RTST,由PLS到VDD的恢复性充电通路。

过流 若加在保护FET的电压(VDD-VPLS)大于VOC的时间超过了tOCD,则DS2720关断外部充电和放电FET,并将保护寄存器DOC置位。直到PLS上的电压升至大于VDD-VOC时电路才会导通。DS2720提供流经内部VDD至PLS电阻RTST的测试电流来检测有害低阻抗负载的移除。

过热 若DS2720温度超过TMAX,则立即关断外部充电和放电FET。在以下两个条件满足前FET不会导通:电池温度降到低于TMAX,主机将OT复位。

充电温度 应尽量在室温下充电。镍基电池应在10°C至30°C(50°F至86°F)之间快速充电。低于5°C(41°F)和高于45°C(113°F)时镍基电池的充电能力急剧下降。锂离子电池在整个温度范围内呈现良好的充电性能,但低于5°C(41°F)时充电速率应小于1°C。

本文小结

NiMH充电器可为NiCd电池充电,反之则不行。NiCd电池专用的充电器将会使NiMH电池过充。快速充电可增强镍基电池的寿命和性能,这是因为快速充电降低了内部结晶引起的记忆效应。镍基和锂基电池要求不同的充电算法。Li+电池需要保护电路来监控和保护过流、短路、过压、欠压以及过热。注意,在电池不常使用时,应从充电器中取出,在使用前对电池浮充。

『叁』 3.7V锂电池充放电路

这个是锂电池保护板的电路,也就是锂电池芯配合这个电路成为完整的电池(比如手机电池)。这个集成在电池里的保护电路是锂电池的防线,充放电的保护电压相当保守。

『肆』 18650电池充放电保护电路。

18650电芯具有较大的充放电电流,远远超过手机锂离子电池的充放电电版流,因此使用手权机的电池保护板放在18650电芯上使用,如果充电电流和放电电流都比较小,例如1000mA以内,还是可以的,但如果高于这个电流,如达到2A或者更高,部不适合了,容易烧毁保护板,导致保护失效。
4.2V是锂离子电池的充电限制电压,3.7V是放电保护电压,在手机上,电池放电到3.6-3.7V时手机就会提示电量弱,需要充电并关机。而电池保护板的放电保护电压一般在2.75-3.0V。

『伍』 需求一个10V的锂电池充放电路

这个没问题,用普通的比较器,比喻358,339之类的就可以满足你的要求。专
你这个根本就不算什属么充放电路,最多就是个指示电路了
如果你的设备需要10V的电压。你随便稳压下,不就行了吗?
以上2个电路我都有现成的,需要的联系下我。
刚刚看了,原来你还是上海的啊
我也是啊,巧了
我们也做锂电池的

『陆』 蓄电池充放电电路 分哪几部分呢

铅酸蓄电池的工作原理
1、铅酸蓄电池电动势的产生

铅酸蓄电池充电后,正极板二氧化铅(PbO2),在硫酸溶液中水分子的作用下,少量二氧化铅与水生成可离解的不稳定物质--氢氧化铅(Pb(OH)4),氢氧根离子在溶液中,铅离子(Pb4)留在正极板上,故正极板上缺少电子。

铅酸蓄电池充电后,负极板是铅(Pb),与电解液中的硫酸(H2SO4)发生反应,变成铅离子(Pb2),铅离子转移到电解液中,负极板上留下多余的两个电子(2e)。

可见,在未接通外电路时(电池开路),由于化学作用,正极板上缺少电子,负极板上多余电子,如右图所示,两极板间就产生了一定的电位差,这就是电池的电动势。

2、铅酸蓄电池放电过程的电化反应

铅酸蓄电池放电时,在蓄电池的电位差作用下,负极板上的电子经负载进入正极板形成电流I。同时在电池内部进行化学反应。

负极板上每个铅原子放出两个电子后,生成的铅离子(Pb2)与电解液中的硫酸根离子(SO4-2)反应,在极板上生成难溶的硫酸铅(PbSO4)。

正极板的铅离子(Pb4)得到来自负极的两个电子(2e)后,变成二价铅离子(Pb2),,与电解液中的硫酸根离子(SO4-2)反应,在极板上生成难溶的硫酸铅(PbSO4)。正极板水解出的氧离子(O-2)与电解液中的氢离子(H)反应,生成稳定物质水。

电解液中存在的硫酸根离子和氢离子在电力场的作用下分别移向电池的正负极,在电池内部形成电流,整个回路形成,蓄电池向外持续放电。

放电时H2SO4浓度不断下降,正负极上的硫酸铅(PbSO4)增加,电池内阻增大(硫酸铅不导电),电解液浓度下降,电池电动势降低。

3、铅酸蓄电池充电过程的电化反应

充电时,应在外接一直流电源(充电极或整流器),使正、负极板在放电后生成的物质恢复成原来的活性物质,并把外界的电能转变为化学能储存起来。

在正极板上,在外界电流的作用下,硫酸铅被离解为二价铅离子(Pb2)和硫酸根负离子(SO4-2),由于外电源不断从正极吸取电子,则正极板附近游离的二价铅离子(Pb2)不断放出两个电子来补充,变成四价铅离子(Pb4),并与水继续反应,最终在正极极板上生成二氧化铅(PbO2)。

在负极板上,在外界电流的作用下,硫酸铅被离解为二价铅离子(Pb2)和硫酸根负离子(SO4-2),由于负极不断从外电源获得电子,则负极板附近游离的二价铅离子(Pb2)被中和为铅(Pb),并以绒状铅附着在负极板上。

电解液中,正极不断产生游离的氢离子(H)和硫酸根离子(SO4-2),负极不断产生硫酸根离子(SO4-2),在电场的作用下,氢离子向负极移动,硫酸根离子向正极移动,形成电流。

充电后期,在外电流的作用下,溶液中还会发生水的电解反应。

4、铅酸蓄电池充放电后电解液的变化

从上面可以看出,铅酸蓄电池放电时,电解液中的硫酸不断减少,水逐渐增多,溶液比重下降。

从上面可以看出,铅酸蓄电池充电时,电解液中的硫酸不断增多,水逐渐减少,溶液比重上升。

实际工作中,可以根据电解液比重的变化来判断铅酸蓄电池的充电程度。

这样总可以了吧!大哥

『柒』 蓄电池防过充、过放电路该怎么设计,求详细讲解过程

PWM充电,设上限点充满停,设下限点放至欠压停.

『捌』 锂电池充电和放电电路是怎么保护的吗

充电和放电均有保护电路,检测过程电流和电压再与用时间做监视判断即可内。
现在的智能手机都有容保护哩电池过充,电路设计时,由于电池充电,达到指定电压后编取程序就可以自动切断电源!
举例:数码相机带的原装充电器,是有防止过冲功能的。

这类充电器,称为智能充电器。因为这种充电器的核心是由单片机构成的,由一套充电电路,能实时监测电池温度,电压等参数,不会过热不会过冲,而且不同电压下充电电流也是不一样的,充满后还会进入浮充程序,彻底充满后会完全关闭充电器。

还有一类就是国产山寨的傻冲,这类充电器没有单片机控制,只有简单的电压转换电路,说白了就是一个电压器,把220V转成4.2V,这种充电器没有开始也没有结束,只会不停的输出电压,属于垃圾充电器。

『玖』 如何检查 是主板充放电路问题还是电池问题

这个问题很简单,把电池放到ok的NB上面去充电,如果可以充电则证明主板是NG的。主板不充电的原因很多,充放电线路问题占很大比例。其次电源也是有可能的。电池很少有一点电都充不进去的。另外电池能开机不代表主板或者电池就是好的。开机和充电是两码事

阅读全文

与电池充放电路相关的资料

热点内容
如何做好小区物业维修班长 浏览:629
芭比娃娃家具怎么放 浏览:801
防水台增高女拖鞋一般高度多少 浏览:493
温州前锋油烟机售后维修电话 浏览:418
四个字家具有哪些 浏览:426
电路中6D 浏览:525
有什么可以防家电免雷电劈 浏览:694
住宅防水如何选择 浏览:675
如何加盟家具维修公司 浏览:486
盐田区办公家具厂有哪些 浏览:265
国家电网是个什么性质的企业 浏览:166
怎么翻新消毒柜内部 浏览:4
家装用什么牌子的防水 浏览:879
美的什么家电最差 浏览:609
砂浆防水一桶做多少面积 浏览:623
什么平台适合发家电维修 浏览:542
航空电子电路 浏览:858
买家具上什么网最划算 浏览:553
唯一电路 浏览:140
天津华苑家电维修 浏览:739