❶ 上游氧传感器加热控制电路故障能导致不着车吗
上游氧传感器加热控制电路故障能导致不着车。
氧传感器利用了Nernst原理。
其核心元件是专多孔的ZrO2陶瓷管,属它是一种固态电解质,两侧面分别烧结上多孔铂(Pt)电极。在一定温度下,由于两侧氧浓度不同,高浓度侧(陶瓷管内侧4)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧(废气侧),使该电极带负电, 即产生电势差。
当空燃比较低时(浓混合气),废气中的氧较少,因此陶瓷管外侧氧离子较少,形成1.0V左右的电动势;
当空燃比等于14.7时,此时陶瓷管内外两侧产生的电动势为0.4V~0.5V, 该电动势为基准电动势;
当空燃比较高时(稀混合气),废气中氧含量较高,陶瓷管内外的氧离子浓度差较小,所以产生电动势很低,接近为零。
加热型氧传感器:
- 加热型氧传感器抗铅能力强;
- 对排气温度依赖少,能在负荷低、废气温度较低的情况下照常发挥作用;
- 起动后迅速进入闭环控制
❷ 传感器中用得到电路板吗
用得到电路板。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。
氧传感器利用了Nernst原理。
其核心元件是多孔的ZrO2陶瓷管,它是一种固态电解质,两侧面分别烧结上多孔铂(Pt)电极。在一定温度下,由于两侧氧浓度不同,高浓度侧(陶瓷管内侧4)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧(废气侧),使该电极带负电, 即产生电势差。
当空燃比较低时(浓混合气),废气中的氧较少,因此陶瓷管外侧氧离子较少,形成1.0V左右的电动势;
当空燃比等于14.7时,此时陶瓷管内外两侧产生的电动势为0.4V~0.5V, 该电动势为基准电动势;
当空燃比较高时(稀混合气),废气中氧含量较高,陶瓷管内外的氧离子浓度差较小,所以产生电动势很低,接近为零。
加热型氧传感器:
- 加热型氧传感器抗铅能力强;
- 对排气温度依赖少,能在负荷低、废气温度较低的情况下照常发挥作用;
- 起动后迅速进入闭环控制
加热型管式氧传感器核心元件:
加热型片式式氧传感器芯片:
❸ 陶瓷材料的物质结构有那些陶瓷材料的性能特点有哪些简述常用的结构陶瓷的分类。
陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。
分类
普通陶瓷材料采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。
特种陶瓷材料采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。本节主要介绍特种陶瓷。
编辑本段性能特点力学性能陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。
热性能陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。
电性能大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。
化学性能陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。
光学性能陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。
编辑本段常用特种陶瓷材料根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。
1.结构陶瓷氧化铝陶瓷主要组成物为Al2O3,一般含量大于45%。氧化铝陶瓷具有各种优良的性能。耐高温,一般可要1600℃长期使用,耐腐蚀,高强度,其强度为普通陶瓷的2~3倍,高者可达5~6倍。其缺点是脆性大,不能接受突然的环境温度变化。用途极为广泛,可用作坩埚、发动机火花塞、高温耐火材料、热电偶套管、密封环等,也可作刀具和模具。
氮化硅陶瓷主要组成物是Si3N4,这是一种高温强度高、高硬度、耐磨、耐腐蚀并能自润滑的高温陶瓷,线膨胀系数在各种陶瓷中最小,使用温度高达1400℃,具有极好的耐腐蚀性,除氢氟酸外,能耐其它各种酸的腐蚀,并能耐碱、各种金属的腐蚀,并具有优良的电绝缘性和耐辐射性。可用作高温轴承、在腐蚀介质中使用的密封环、热电偶套管、也可用作金属切削刀具。
碳化硅陶瓷主要组成物是SiC,这是一种高强度、高硬度的耐高温陶瓷,在1200℃~1400℃使用仍能保持高的抗弯强度,是目前高温强度最高的陶瓷,碳化硅陶瓷还具有良好的导热性、抗氧化性、导电性和高的冲击韧度。是良好的高温结构材料,可用于火箭尾喷管喷嘴、热电偶套管、炉管等高温下工作的部件;利用它的导热性可制作高温下的热交换器材料;利用它的高硬度和耐磨性制作砂轮、磨料等。
六方氮化硼陶瓷主要成分为BN,晶体结构为六方晶系,六方氮化硼的结构和性能与石墨相似,故有“白石墨”之称,硬度较低,可以进行切削加工具有自润滑性,可制成自润滑高温轴承、玻璃成形模具等。
2.工具陶瓷硬质合金主要成分为碳化物和粘结剂,碳化物主要有WC、TiC、TaC、NbC、VC等,粘结剂主要为钴(Co)。硬质合金与工具钢相比,硬度高(高达87~91HRA),热硬性好(1000℃左右耐磨性优良),用作刀具时,切削速度比高速钢提高4~7倍,寿命提高5~8倍,其缺点是硬度太高、性脆,很难被机械加工,因此常制成刀片并镶焊在刀杆上使用,硬质合金主要用于机械加工刀具;各种模具,包括拉伸模、拉拔模、冷镦模;矿山工具、地质和石油开采用各种钻头等。
金刚石天然金刚石(钻石)作为名贵的装饰品,而合成金刚石在工业上广泛应用,金刚石是自然界最硬的材料,还具备极高的弹性模量;金刚石的导热率是已知材料中最高的;金刚石的绝缘性能很好。金刚石可用作钻头、刀具、磨具、拉丝模、修整工具;金刚石工具进行超精密加工,可达到镜面光洁度。但金刚石刀具的热稳定性差,与铁族元素的亲和力大,故不能用于加工铁、镍基合金,而主要加工非铁金属和非金属,广泛用于陶瓷、玻璃、石料、混凝土、宝石、玛瑙等的加工。
立方氮化硼(CBN)具有立方晶体结构,其硬度高,仅次于金刚石,具热稳定性和化学稳定性比金刚石好,可用于淬火钢、耐磨铸铁、热喷涂材料和镍等难加工材料的切削加工。可制成刀具、磨具、拉丝模等
其它工具陶瓷尚有氧化铝、氧化锆、氮化硅等陶瓷,但从综合性能及工程应用均不及上述三种工具陶瓷。
3.功能陶瓷功能陶瓷通常具的特殊的物理性能,涉及的领域比较多,常用功能陶瓷的特性及应用见表。
常用功能陶瓷的组成、特性及应用
种类性能特征主要组成用途介电陶瓷绝缘性Al2O3、Mg2SiO4集成电路基板热电性PbTiO3、BaTiO3热敏电阻压电性PbTiO3、LiNbO3振荡器强介电性BaTiO3电容器光学陶瓷荧光、发光性Al2O3CrNd玻璃激光红外透过性CaAs、CdTe红外线窗口高透明度SiO2光导纤维电发色效应WO3显示器磁性陶瓷软磁性ZnFe2O、γ-Fe2O3磁带、各种高频磁心硬磁性SrO.6Fe2O3电声器件、仪表及控制器件的磁芯半导体陶瓷光电效应CdS、Ca2Sx太阳电池阻抗温度变化效应VO2、NiO温度传感器热电子放射效应LaB6、BaO热阴极
(一)工程塑料的开发利用
目前,主要的工程塑料制品已有10多种,其中聚酸胺、聚甲醛、聚磷酸酯、改性聚苯酸和热塑性聚酯被称为五大工程塑料.它们的产量较大.价格一般为传统通用塑料的2—6倍.而聚摧硫酸等特种工程塑料的价格为通用塑料的5一10倍。以塑料代替钢铁、木材、水泥三大传统基本材料,可以节省大量能源、人力和物力。
(二)合成橡胶的开发利用
由于生产合成橡胶的原料丰富,其良好的性能又可以满足当代科技发展对材料提出的某些特殊要求,所以合成橡胶出现几十年来,品种已很丰富,一般可将其分为通用合成橡胶和特种合成橡胶两类。通用合成橡胶性能与天然橡胶相似,用于制造一般的橡胶制品,如各种轮胎、传动带、胶管等工业用品和雨衣、胶鞋等生活用品。特种合成橡胶具有耐高温、耐低温耐酸碱等优点,多用于特殊环境和高科技领域,如航空、航天、军事等方面。
(三)合成纤维的开发利用
合成纤维的品种有几十种,但最常见的是六大种:聚酸胺纤维(商品名尼龙)、聚胺纤维(商品名涤纶)、聚乙烯纤维(商品名腈纶)、聚丙烯纤维(商品名丙纶)、聚乙烯酸纤维(商品名维纶)、聚氯乙烯纤维(商品名氨纶)。
高分子合成材料具有质量小、绝缘性能好等特点,所以发展很快,但又都有先天不足,即它们都在不同程度上对氧、热和光有敏感性。但是,随着高技术的迅速发展,高分子合成材料的大军必将在经济生活中扮演举足轻重的角色。
四、陶瓷材料
陶瓷材料中已崛起了精细陶瓷,它以抗高温、超强度、多功能等优良性能在新材料世界独领风骚。精细陶瓷是指以精制的高纯度人工合成的无机化合物为原料,采用精密控制工艺烧结的高性能陶瓷,因此又称先进陶瓷或新型陶瓷。精细陶瓷有许多种,它们大致可分成三类。
(一)结构陶瓷。
这种陶瓷主要用于制作结构零件。机械工业中的一些密封件、轴承、刀具、球阀、缸套等都是频繁经受摩擦而易磨损的零件,用金属和合金制造有时也是使用不了多久就会损坏,而先进的结构陶瓷零件就能经受住这种“磨难”。
(二)电子陶瓷
指用来生产电子元器件和电子系统结构零部件的功能性陶瓷。这些陶瓷除了具有高硬度等力学性能外,对周围环境的变化能“无动于衷”,即具有极好的稳定性,这对电子元件是很重要的性能,另外就是能耐高温。
(三)生物陶瓷
生物陶瓷是用于制造人体“骨骼一肌肉”系统,以修复或替换人体器官或组织的一种陶瓷材料。
精细陶瓷是新型材料特别值中得注意的一种,它有广阔的发展前途。这种具有优良性能的精细陶瓷,有可能在很大的范围内代替钢铁以及其他金属而得到广泛应用,达到节约能源、提高效率、降低成本的目的;精细陶瓷和高分子合成材料相结合.可以使交通运输工具轻量化、小型化和高效化。
精陶材料将成为名副其实的耐高温的高强度材料,从而可用作包括飞机发动机在内的各种热机材料、燃料电池发电部件材料、核聚变反应堆护壁材料、无公害的外燃式发动机材料等。精细陶瓷与高性能分子材料、新金属材料、复合材料并列为四大新材料。有些科学家预言.由于精细陶瓷的出现,人类将从钢铁时代重新进入陶瓷时代
编辑本段更多信息什么是陶瓷?什么是陶瓷材料
原来的陶瓷就是指陶器和瓷器的通称。也就是通过成型和高温烧结所得到的成型烧结体。传统的陶瓷材料主要是指硅铝酸盐。刚开始的时候人们对硅铝酸盐的选择要求不高,纯度不大,颗粒的粒度也不均一,成型压强不高。这时得到陶瓷称为传统陶瓷。后来发展到纯度高,粒度小且均一,成型压强高,进行烧结得到的烧结体叫做精细陶瓷。
接下来的阶段,人们研究构成陶瓷的陶瓷材料的基础,使陶瓷的概念发生了很大的变化。陶瓷内部的力学性能是与构成陶瓷的材料的化学键结构有关,在形成晶体时能够形成比较强的三维网状结构的化学物质都可以作为陶瓷的材料。这重要包括比较强的离子键的离子化合物,能够形成原子晶体的单质和化合物,以及形成金属晶体的物质。他们都可以作为陶瓷材料。其次人们借鉴三维成键的特点发展了纤维增强复合材料。更进一步拓宽了陶瓷材料的范围。因此陶瓷材料发展成了可以借助三维成键的材料的通称。
陶瓷的概念就发展成为可以借助三维成键的材料,通过成型和高温烧结所得到的烧结体。(这个概念把玻璃也纳入了陶瓷的范围)
研究陶瓷的结构和性能的理论也得到了展开:陶瓷材料,内部微结构(微晶晶面作用,多孔多相分布情况)对力学性能的影响得到了发展。材料(光,电,热,磁)性能和成形关系,以及粒度分布,胶着界面的关系也得到发展,陶瓷应当成为承载一定性能物质存在形态。这里应该和量子力学,纳米技术,表面化学等学科关联起来。陶瓷学科成为一个综合学科。
这种发展在一定程度上和高分子成型关联起来。它们应当相互影响。
扩展阅读:http://www.emuch.net/html/200908/1478345.html
望采纳
❹ 家里装修,安装电路管线有哪些要求
1、各种卫生设备与地面或墙体的连接应用金属固定件安装牢固。金属固定件应进行防腐处理。当墙体为多孔砖墙时,应凿孔填实水泥砂浆后再进行固定件安装。当墙体为轻质隔墙时,应在墙体内设后置埋件,后置埋件应与墙体连接牢固。
2、各种卫生器具安装的管道连接件应易于拆卸、维修。排水管道连接应采用有橡胶垫片排水栓。卫生器具与金属固定件的连接表面应安置铅质或橡胶垫片。各种卫生陶瓷类器具不得采用水泥砂浆窝嵌。
3、各种卫生器具与台面、墙面、地面等接触部位均应采用硅酮胶或防水密封条密封。
4、各种卫生器具安装验收合格后应采取适当的成品保护措施。
5、管道敷设应横平竖直,管卡位置及管道坡度等均应符合规范要求。各类阀门安装应位置正确且平正,便于使用和维修。
6. 嵌入墙体、地面的管道应进行防腐处理并用水泥砂浆保护,其厚度应符合下列要求:墙内冷水管不小于10mm、热水管不小于15mm,嵌入地面的管道不小于10mm。嵌入墙体、地面或暗敷的管道应作隐蔽工程验收。
7、冷热水管安装应左热右冷,平行间距应不小于200mm。当冷热水供水系统采用分水器供水时,应采用半柔性管材连接。
8、各种新型管材的安装应按生产企业提供的产品说明书进行施工。
❺ 新型陶瓷有哪些
韧性陶瓷
经过特殊工艺处理制成的韧性陶瓷,除了可以去掉普通陶瓷的脆性之外,还具有强度大、硬度高、不怕化学腐蚀等优点。因此,应用范围更加广泛。韧性陶瓷可以用来制作切菜刀、剪刀、螺丝刀、榔头、锯、斧头等日用工具,坚硬程度不亚于钢铁制品,而且不会带铁锈味和磁性,更适宜切各种生吃食物和熟食。
采用韧性陶瓷制造的发动机体积小、重量轻、热效率高,用同样的燃料可以使汽车多跑30%的路程,是一种有效的节能型发动机。
压电陶瓷
压电陶瓷是一种具有能量转换功能的陶瓷,在机械力的作用下发生形变时,会引起表面带电。其带电强度的大小,可以和施加电场的强度成正比,也可以成反比。因此,能够在各个领域中得到广泛应用。
生物医学工程是压电陶瓷应用的重要领域。可以用它来制作探测人体信息的压电传感器和进行压电超声治疗。当压电陶瓷发出的超声波在人体内传输时,体内的不同组织对超声波有不同的发射和透射作用。反射回来的超声波经压电陶瓷接收器转换成电信号并显示在屏幕上,据此就可以检查内脏组织的情况,判断是否发生病变。进入人体的超声波达到一定强度时,能使组织发热并轻微震动。这种作用可以对一些疾病起到治疗作用。
由于压电陶瓷的敏感性很强,能精确地测量出微弱的压力变化,人们用它来制造地震测量装置是非常适合的。地震波经过压电陶瓷的作用,可以感应出一定强度的电信号,并在屏幕上显示或以其他形式表现出来。同时,压电陶瓷还能够测定声波的传播方向。所以,用来测定和报告地震十分精确。
利用压电陶瓷制造的电子振荡器和电子滤波器,频率稳定性好、精度高、使用寿命长,特别是在多路通信设备中能提高抗干扰性。用压电陶瓷可以制成声波探鱼仪,在水中能发出很强的声波并传至远距离之外,可以有效地探测鱼群的分布情况、规模、种类以及其他有关的资料,是捕捞作业的得力助手。
在现代军事作战中,压电陶瓷也可以发挥巨大的威力。在反坦克导弹上装上压电陶瓷元件会缩短引爆时间,增加引爆的精确性。当炮弹击中坦克时,陶瓷因受到压力而产生高电压,从而引燃炸药。压电陶瓷在非常强的机械冲击波的作用下,还可以将储存的能量在几十万分之一秒的瞬间里释放出来,产生的瞬间电流达10万安培以上的高压脉冲,用来进行原子武器的引爆十分理想。
低温陶瓷
低温陶瓷是一种在液氮沸腾状态下制成的陶瓷制品,有着广泛的应用领域。低温陶瓷可以用于电脑,使运算速度大幅度提高,用于电视机可令图像更清晰,如果制作成录像机磁头,其寿命为普通磁头的5倍,所录制的影片的清晰度也很高。此外,在金属加工中,低温陶瓷还可以替代金刚石刀具来进行金属切削。用低温陶瓷制成的新型蓄电池,储电量可以比一般蓄电池高出许多倍。
陶瓷纸
淘瓷纸具有优异的透气性、吸湿性、耐磨性和耐热性,能够在急冷、巨热的情况下正常使用。同时,还具有良好的绝缘性、隔热性和耐腐蚀性能,现已为电子工业、材料工业以及自动化工程中不可缺少的材料。陶瓷纸的耐热温度高达1200℃~1600℃左右,可以作为高温机械的衬垫、填料,密封环、挡热板使用。波纹陶瓷纸浸满氯化锂之后,可以作为热交换器中的热交换片,能够在空调器生产中广泛采用。
利用陶瓷纸具有的强度高、耐磨好的特点,可以制作多种型号的研磨纸,既经久耐用,又可以减少对环境的污染,是新一代研磨材料。陶瓷纸还可以叠合起来,制成刹车片、摩擦片,用于汽车、机床工业中。利用陶瓷纸还可以制成半导体,特种电阻、电容、压电元件等多种电子元件及传感器、印刷电路板等。
用矾土、碳化硅陶瓷纸制成的玻璃钢制品,具有强度高、耐热性好等特点;用矾土硅酸盐陶瓷纸制成的滤膜,能够在高温下处理废气、废液,是新一代过滤材料。此外,用陶瓷纸制成的绝缘带、扬声器、话筒及抗高温容器,也都具有新奇的功能,引起人们的极大关注。
多孔陶瓷
多孔陶瓷,又称为微孔陶瓷、泡沫陶瓷等,具有均匀分布的微孔,体积密度小,有着三维立体网络骨架结构且互相贯通的特点。多孔陶瓷在气体、液体过滤、净化分离、化工催化载体、高级保温材料、生物植入材料、吸声减震和传感器材料等许多方面都有广泛的应用。
❻ 什么叫砖块电源,半砖电源和全砖电源的区别
电源模块。尺来寸小,源功率大。一般使用需令加储能原件,散热等。尺寸形如砖,故称砖块电源。半砖电源是全砖电源尺寸的 一半。全砖一般功率能达500瓦上下。内部电路紧密且发热器件贴壳性好,电路较先进,效率高,故能做到体积小功率大。
❼ 陶瓷主要成份
陶瓷是以天然粘土以及各种天然矿物为主要原料经过粉碎混炼、成型和煅烧制得的材料的各种制品。
以前人们把用陶土制作成的在专门的窑炉中高温烧制的物品称作陶瓷,陶瓷是陶器和瓷器的总称。陶瓷的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。它包括由粘土或含有粘土的混合物经混炼,成形,煅烧而制成的各种制品。由最粗糙的土器到最精细的精陶和瓷器都属于它的范围。
对于它的主要原料是取之于自然界的硅酸盐矿物(如粘土、石英等),因此与玻璃、水泥、搪瓷、耐火材料等工业,同属于“硅酸盐工业”的范畴。陶瓷的主要产区为彭城镇、景德镇、醴陵、高安、丰城、萍乡、黎川、佛山、潮州、德化、淄博、唐山、北流等地。此外景德镇是我国“瓷都”之一。
(7)多孔陶瓷电路扩展阅读:
特性:
说到陶瓷材料,难免将陶与瓷分开来谈,我们经常说的陶瓷,是指陶器和瓷器两个种类的合称。在创作领域中,陶与瓷都是陶瓷艺术中不可或缺的重要组成部分,但是陶与瓷却有着质的不同。
陶质材料:与瓷相比,陶的质地相对松散,颗粒也较粗,烧制温度一般在900℃—1500℃之间,温度较低,烧成后色泽自然成趣,古朴大方,成为许多艺术家所喜爱的造型表现材料之一。陶的种类很多,常见的有黑陶、白陶、红陶、灰陶和黄陶等,红陶、灰陶和黑陶等采用含铁量较高的陶土为原料,铁质陶土在氧化气氛下呈红色,还原气氛下呈灰色或黑色。
瓷质材料:与陶相比,瓷的质地坚硬、细密、严禁、耐高温、釉色丰富等特点,烧制温度一般在1300℃左右,常有人形容瓷器“声如磬、明如镜、颜如玉、薄如纸”,瓷多给人感觉是高贵华丽,和陶的那种朴实正好相反。
参考资料来源:网络-陶瓷
❽ 陶瓷的作用
陶瓷(Ceranics)的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。它包括由粘土或含有粘土的混合物经混炼,成形,煅烧而制成的各种制品。由最粗糙的土器到最精细的精陶和瓷器都属于它的范围。对于它的主要原料是取之于自然界的硅酸盐矿物(如粘土、长石、石英等),因此与玻璃、水泥、搪瓷、耐火材料等工业,同属于“硅酸盐工业”(Silicate Instry)的范畴。
随着近代科学技术的发展,近百年来又出现了许多新的陶瓷品种。它们不再使用或很少使用粘土、长石、石英等传统陶瓷原料,而是使用其他特殊原料,甚至扩大到非硅酸盐,非氧化物的范围,并且出现了许多新的工艺。美国和欧洲一些国家的文献已将“Ceramic”一词理解为各种无机非金属固体材料的通称。因此陶瓷的含义实际上已远远超越过去狭窄的传统观念了•
迄今为止,陶瓷器的界说似可概括地作如下描述:陶瓷是用铝硅酸盐矿物或某些氧化物等为主要原料,依照人的意图通过特定的化学工艺在高温下以一定的温度和气氛制成的具有一定型式的工艺岩石。表面可施釉或不施釉,若干瓷质还具有不同程度的半透明度,通体是由一种或多种晶体或与无定形胶结物及气孔或与熟料包裹体等微观结构组成。
陶瓷工业是硅酸盐工业的主要分支之一,属于无机化学工业范围.但现代科学高度综合,互相渗透,从整个陶瓷工业制造工艺的内容来分析,它的错综复杂与牵涉之广,显然不是仅用无机化学的理论所能概括的。
陶瓷制品的品种繁多,它们之间的化学成分.矿物组成,物理性质,以及制造方法,常常互相接近交错,无明显的界限,而在应用上却有很大的区别。因此很难硬性地归纳为几个系统,详细的分类法各家说法不一,到现在国际上还没有一个统一的分类方法。常用的有如下两种从不同角度出发的分类法:
(一)按用途的不同分类
1.日用陶瓷:如餐具、茶具、缸,坛、盆。罐等。
2.艺术陶瓷:如花瓶、雕塑品.陈设品等。
3.工业陶瓷:指应用于各种工业的陶瓷制品。又分以下6各方面:
(1)、建筑一卫生陶瓷: 如砖瓦,排水管、面砖,外墙砖,卫生洁其等;
(2)、化工陶瓷: 用于各种化学工业的耐酸容器、管道,塔、泵、阀以及搪砌反应锅的耐酸砖、灰等;
(3)、化学瓷: 用于化学实验室的瓷坩埚、蒸发皿,燃烧舟,研体等;
(4)、电瓷: 用于电力工业高低压输电线路上的绝缘子。电机用套管,支柱绝缘于、低压电器和照明用绝缘子,以及
电讯用绝缘子,无线电用绝缘子等;
(5)、耐火材科: 用于各种高温工业窑炉的耐火材料;
(6)、特种陶瓷: 甩于各种现代工业和尖端科学技术的特种陶瓷制品,有高铝氧质瓷、镁石质瓷、钛镁石质瓷、锆英
石质瓷、锂质瓷、以及磁性瓷、金属陶瓷等。
(二)按所用原料及坯体的致密程度分类可分为:
土器 (brickware or terra-cotta), 陶器 (potttery),炻器 (stone Ware),半瓷器 (semivitreous china),以至瓷器(130relain),原料是从粗到精,坯体是从粗松多孔,遥步到达致密,烧结,烧成温度也是遂渐从低趋高。
土器是最原始最低级的陶瓷器,一般以一种易熔粘土制造。在某些情况下也可以在粘土中加入熟料或砂与之混合,以减少收缩。这些制品的烧成温度变动很大,要依据粘土的化学组成所含杂质的性质与多少而定。以之制造砖瓦,如气孔率过高,则坯体的抗冻性能不好,过低叉不易挂住砂浆,所以吸水率一般要保持5~15%之间。烧成后坯体的颜色,决定于粘土中着色氧化物的含量和烧成气氛,在氧化焰中烧成多呈黄色或红色,在还原焰中烧成则多呈青色或黑色。
我国建筑材料中的青砖,即是用含有Fe2O3的黄色或红色粘土为原料,在临近止火时用还原焰煅烧,使Fe203还原为FeON成青色,陶器可分为普通陶器( cmmon,pottery)和精陶器(Fine earthenware)两类。普通陶器即指土陶盆.罐、缸、瓮.以及耐火砖等具有多孔性着色坯体的制品。精陶器坯体吸水率仍有4~1 2%,因此有渗透性,没有半透明性,一般白色,也有有色的。釉多采用含铅和硼的易熔釉。它与炻器比较,因熔剂宙量较少,烧成温度不超过1300℃,所以坯体增未充分烧结;与瓷器比较,对原料的要求较低,坯料的可塑性较大,烧成温度较低。不易变形,因而可以简化制品的成形,装钵和其他工序。但精陶的机械强度和冲击强度比瓷器.炻器要小,同时它的釉比上述制品的釉要软,当它的釉层损坏时,多孔的坯体即容易沾污,而影响卫生。
精陶按坯体组成的不同,又可分为:粘土质、石灰质,长石质、熟料质等四种。粘土质精陶接近普通陶器。石灰质精陶以石灰石为熔剂,其制造过程与长石质精陶相似,而质量不及长石质精陶,因之近年来已很少生产,而为长石质精陶所取代。长石质精陶又称硬质精陶,以长石为熔剂。是陶器中最完美和使用最广的一种。近世很多国家用以大量生产日用餐具(杯、碟盘予等)及卫生陶器以代替价昂的瓷器。热料精陶是在精陶坯料中加入一定量熟料,目的是减少收缩,避免废品。这种坯料多应用于大型和厚胎制品(如浴盆,太的盥洗盆等)。
炻器在我国古籍上称“石胎瓷”,坯体致密,已完全烧结(sintering),这一点已很接近瓷器。但它还没有玻化(Vitrification),仍有2%以下的吸水率,坯体不透明,有白色的,而多数允许在烧后呈现颜色,所以对原料纯度的要求不及瓷器那样高,原料取给容易。炻器具有很高的强度和良好的热稳定性,很适应于现代机械化洗涤,并能顺利地通过从冰箱到烤炉的温度急变,在国际市场上由于旅游业的发达和饮食的社会化,炻器比之搪陶具有更大的销售量。
半瓷器的坯料接近于瓷器坯料,但烧后仍有3~5%的吸水率(真瓷器 true porceiain,吸水率在0.5%以下),所以它的使用性能不及瓷器,比精陶则要好些。
瓷器是陶瓷器发展的更高阶段。它的特征是坯体已完全烧结,完全玻化,因此很致密,对液体和气体都无渗透性,胎薄处星半透明,断面呈贝壳状,以舌头去舔,感到光滑而不被粘住.硬质瓷 (hard porcetain) 具有陶瓷器中最好的性能。用以制造高级日用器皿,电瓷、化学瓷等。
软质瓷 (soft porcelain) 的熔剂较多,烧成温度较低,因此机械强度不及硬质瓷,热稳定性也较低,但其透明度高,富于装饰性,所以多用于制造艺术陈设瓷。至于熔块瓷 (Fritted porcelain) 与骨灰磁 (bone china),它们的烧成温度与软质瓷相近,其优缺点也与软质瓷相似,应同属软质瓷的范围。这两类瓷器由于生产中的难度较大(坯体的可塑性和干燥强度都很差,烧成时变形严重),成本较高,生产并不普遍。英国是骨灰瓷的著名产地,我国唐山也有骨灰瓷生产。
特种陶瓷是随着现代电器,无线电、航空、原子能、冶金、机械、化学等工业以及电子计算机、空间技术、新能源开发等尖端科学技术的飞跃发展而发展起来的。这些陶瓷所用的主要原料不再是粘土,长石,石英,有的坯休也使用一些粘土或长石,然而更多的是采用纯粹的氧化物和具有特殊性能的原料,制造工艺与性能要求也各不相同。
❾ 上游氧气传感器加热电路故障怎么修
我自己有点资料,希望能够帮助你了解一下!
上游氧传感器加热控制电路故障能专导致不着车属。
氧传感器利用了Nernst原理。
其核心元件是多孔的ZrO2陶瓷管,它是一种固态电解质,两侧面分别烧结上多孔铂(Pt)电极。在一定温度下,由于两侧氧浓度不同,高浓度侧(陶瓷管内侧4)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧(废气侧),使该电极带负电, 即产生电势差。
当空燃比较低时(浓混合气),废气中的氧较少,因此陶瓷管外侧氧离子较少,形成1.0V左右的电动势;
当空燃比等于14.7时,此时陶瓷管内外两侧产生的电动势为0.4V~0.5V, 该电动势为基准电动势;
当空燃比较高时(稀混合气),废气中氧含量较高,陶瓷管内外的氧离子浓度差较小,所以产生电动势很低,接近为零。
加热型氧传感器:
- 加热型氧传感器抗铅能力强;
- 对排气温度依赖少,能在负荷低、废气温度较低的情况下照常发挥作用;
- 起动后迅速进入闭环控制