⑴ 二極體降壓原理和電路圖
二極體是一個PN結,電流可以從P流向N ,反之不導通,P和N之間的電壓是0.7V左右,這就是二極體的壓降,在電路里串連一個二極體就降低0.7V的電壓,前提是電流方向是從P到N。
二極體降壓特性:
正向性
外加正向電壓時,在正向特性的起始部分,正向電壓很小,不足以克服PN結內電場的阻擋作用,正向電流幾乎為零,這一段稱為死區。這個不能使二極體導通的正向電壓稱為死區電壓。當正向電壓大於死區電壓以後,PN結內電場被克服,二極體正向導通,電流隨電壓增大而迅速上升。
在正常使用的電流范圍內,導通時二極體的端電壓幾乎維持不變,這個電壓稱為二極體的正向電壓。當二極體兩端的正向電壓超過一定數值 ,內電場很快被削弱,特性電流迅速增長,二極體正向導通。
叫做門坎電壓或閾值電壓,硅管約為0.5V,鍺管約為0.1V。硅二極體的正向導通壓降約為0.6~0.8V,鍺二極體的正向導通壓降約為0.2~0.3V。
反向性
外加反向電壓不超過一定范圍時,通過二極體的電流是少數載流子漂移運動所形成反向電流。由於反向電流很小,二極體處於截止狀態。這個反向電流又稱為反向飽和電流或漏電流,二極體的反向飽和電流受溫度影響很大。
一般硅管的反向電流比鍺管小得多,小功率硅管的反向飽和電流在nA數量級,小功率鍺管在μA數量級。溫度升高時,半導體受熱激發,少數載流子數目增加,反向飽和電流也隨之增加。
擊穿
外加反向電壓超過某一數值時,反向電流會突然增大,這種現象稱為電擊穿。引起電擊穿的臨界電壓稱為二極體反向擊穿電壓。
電擊穿時二極體失去單向導電性。如果二極體沒有因電擊穿而引起過熱,則單向導電性不一定會被永久破壞,在撤除外加電壓後,其性能仍可恢復,否則二極體就損壞了。因而使用時應避免二極體外加的反向電壓過高。
二極體是一種具有單向導電的二端器件,有電子二極體和晶體二極體之分,電子二極體因為燈絲的熱損耗,效率比晶體二極體低,所以現已很少見到,比較常見和常用的多是晶體二極體。二極體的單向導電特性,幾乎在所有的電子電路中,都要用到半導體二極體。
⑵ 有高人能給(繪)出這個簡單鍺管小功放的電路圖嗎
網上有最簡單的電路圖。
鍺管就是pnp管,找pnp單管電路圖。
⑶ 二極體、三極體的工作原理及基本電路圖
二極體和三極體都是由PN結構成,二極體是一個PN結,三極體是兩個PN結。
二極體根據材料的版不同有鍺權管和硅管,導通電壓分別為0.3V和0.7V,通常用來整流。
三極體有基極B、集電極C、射極E三個腳,有NPN型和PNP型,根據三個引腳的電壓不同,在電路中的作用不同,通常用於放大或者開關。