⑴ 求大神:基於溫度感測器信號電路的優化設計的電路原理圖~
還以為你提供了電路圖,在這里希望得到優化設計;
⑵ 大家看看我的電路圖怎麼優化
穩壓管是並聯使用的
不是你 這樣串聯的
U2前濾波必須加電容並聯,
⑶ 我畫的電路圖有問題嗎需要改哪裡。。。還有怎麼提高效率 幫我優化一下下。。成功後五積分送上。。。
C1 C4電解電容可以標示上正負極,R1可以標示功率瓦數。
視乎輸出電流大小,C4輸出濾波電容值可以加大一點,C3也可以並上10多uF小電解。
⑷ 電路能否優化
下圖是你做的所謂優化??
如果 DC_IN與VCC_50的電壓值相近就可以,相差超過3V以上就不可以了;電壓高的那個場效應管就有可能關不死而仍然處在弱導通狀態;
⑸ pspice 電路優化問題
搭建電路需要找到這些元件對應的庫,將庫添加進工程文件然後就能搭電路了。內。。貌似只用analog、容special庫和變壓器的庫。。。。。。
樓主是想通過改變電容值讓輸出電壓達到最大對嗎?
這個用全局掃描就可以了,
樓主先在special庫里調出來PRAM,然後把電容換成Cbreak,再將電容參數值設置為全局變數Cv。在PRAM里添加Cv變數,對全局參數Cv進行掃描,然後看輸出隨Cv的變化情況,應該能找到最優值。
如果只是想微調電容進行優化,用PspiceAA,還是換成Cbreak,設置容差,選擇目標函數為Vmax,然後進行靈敏度分析,分析之後就能優化了。
樓主如果想要具體的Pspice用法圖解的話,給個郵箱,我截圖發給你。
⑹ 如何優化RF電路設計
RF電路篇:降低功放耗電量,關注包絡跟蹤
在用於智能手機通信的無線電路(RF電路)中,旨在降低耗電量的技術開發也十分活躍。這是因為,就峰值功率而言,僅RF電路就會消耗2W左右的電力,所以還存在著很大的削減空間。
RF電路中消耗電力最大的是發送部用來放大信號的功率放大器(PA)。在終端和基站處於遠距離等情況下時,信號峰值會在瞬間消耗1.5W左右的電力(圖18)。因此在RF電路中,如何削減PA的耗電量成了關注的焦點。
圖18:RF電路的對策
智能手機的RF電路中,耗電量最大的是功率放大器(PA)。例如LTE在以23dBm輸出時,僅功率放大器就會瞬間消耗1.5W左右的電力(a)。因此,要想降低RF電路的耗電量,提高PA的效率以及通過周邊技術降低損耗至關重要(b)。(圖18:(a)由本刊根據澳大利亞新南維爾士大學和英國Nujira公司的資料製作)
削減耗電量的關鍵在於提高PA的功率附加效率*和降低周邊技術的電力損耗(圖18(b))。
*功率附加效率(PAE:power added efficiency)=表示PA的實際輸出信號電力(從輸出信號電力中減去輸入信號電力的值)與電源載入的直流電力的比率。
PA的功率附加效率因採用的通信方式而異。比如,用於GSM方式通信電路的PA有望達到50%以上的效率,而用於W-CDMA方式的PA最大為40%左右,至於LTE由於尚未進行充分優化等,最大效率只有35%左右。也就是說,LTE終端中用於PA的輸入功率有65%以上被浪費了(化為熱量等)。
多頻阻礙效率提高
今後將成為主流的LTE方式智能手機的PA要想提高功率附加效率無比困難。理由在於多頻化的推進。
LTE方式的智能手機為了能在世界各地使用,標配了國際漫遊功能。因此,RF電路必須支持多個頻率(多頻化)。如果PA和濾波器等RF電路的個別部件根據支持頻率的數量來安裝,部件個數就會增加,導致安裝面積增大,成本也會增加。為了避免這種情況,LTE終端的主流是利用可在一個封裝中支持多個頻率的多頻產品(圖19)。「很多終端廠商打算在RF電路中以多模和多頻部件的使用為主」(村田製作所執行董事、模塊事業本部副本部長中島規巨)。
圖19:通過多頻產品削減安裝面積
採用多頻型功率放大器(PA)的話,即使支持的頻帶數增加,安裝面積也不會增加。(本站根據三菱電機的資料製作)
村田製作所的多頻型PA與單一頻帶(單頻)產品相比,不容易提高效率。所支持的放大頻帶數量越多,功率附加效率越難以提高,二者屬於此消彼長(Trade-off)的關系 注1)。
注1) 多頻型PA一般採用廣帶型放大電路,與特定頻帶具備放大特性的單頻型相比,效率值容易下降。
包絡跟蹤技術亮相
作為提高LTE終端多頻型PA效率的技術,備受關注的是對輸入PA的電源電壓進行細微控制的「Envelope Tracking(包絡跟蹤)」。
包絡跟蹤是對PA的電源電壓進行極其細微的動態調節的技術。此前一直利用以發送信號的1個時隙為單位切換PA電源電壓的方法「Average Power Tracking」。而包絡跟蹤則追蹤信號振幅(信號電力),以更小的時隙切換電源電壓,由此在輸出時會選擇效率最高的電源電壓進行發送(圖20)。
圖20:追蹤信號波形,細微控制電壓
無電壓控制、Average Power Tracking以及Envelope Tracking時的時間軸信號波形示意圖。粉線表示電壓值水平,粉色區域表示發熱(多餘的電力消耗)。(圖由本刊根據Nujira公司的資料製作)
PA的功率附加效率對電源電壓和發送電力有依賴性,因此如果能根據發送電力切換電源電壓,在理想狀態下能一直選擇最大效率點,可以減少多餘的電力消耗。通過組合使用該技術,彌補了多頻型PA效率降低的缺點。
包絡跟蹤有多種實現方法,最常用的是從輸入信號波形中提取振幅的形狀,然後將所需的偏置信號輸入PA的方法(圖21)。此時採用的旨在載入最佳偏壓的控制IC由歐美風險企業開發。
圖21:包絡跟蹤的控制電路
從輸入信號波形生成偏置信號波形,利用偏置信號波形對輸入功率放大器(PA)的電源電壓進行微細控制。根據PA的輸出改變電源電壓,由此能以最高效率的電壓驅動。(圖由本刊根據三菱電機的資料製作)
大幅削減耗電量
例如,如果使用英國Nujira公司供貨的包絡跟蹤用控制IC,耗電量可較未使用時削減40%~55%(圖22)。「與W-CDMA等相比,動態范圍較大的LTE能進一步降低耗電量」(Nujira公司現場應用經理Tamas Vlasits)。
圖22:包絡跟蹤的效果
Nujira公司的包絡跟蹤控制IC「NCT-L1100」封裝在4mm見方的BGA等中(a)。W-CDMA、HSUPA及LTE在23dBm輸出時的RF電路耗電量。導入包絡跟蹤技術,大幅降低了PA的耗電量。LTE的話可削減55%的耗電量(b)。(圖由本刊根據Nujira公司的資料製作)
包絡跟蹤用控制IC插入PA和RF收發器IC(或基帶處理LSI)之間使用。控制IC通過符合MIPI(Mobile Instry Processor Interface)標準的晶元間介面等控制 注2)。
注2) MIPI Alliance於2011年11約成立了旨在制定包絡跟蹤專用介面標準的工作組。預定製定從RF收發器IC或基帶處理LSI收發包絡信號的信號線標准。
在包絡跟蹤用控制IC領域另一家較受關注的公司是美國Quantance。該公司將自主開發的技術命名為「qBoost」,計劃與PA廠商合作擴大技術的應用范圍。該公司稱,利用該技術可將功率附加效率提高至50%左右。
Quantance已經與三菱電機展開了合作。三菱電機前不久發布了尺寸僅3mm見方、可放大6頻帶的PA,設想與包絡跟蹤技術組合使用。組合使用後可確保最大40%的效率(圖23)。
圖23:支持6個頻帶,可確保40%的效率
三菱電機開發的GaAs制PA尺寸只有3mm×3mm×1mm(a)。功率附加效率在1.7G~2GHz的6個頻帶中最大可確保40%(b)。(圖由本刊根據三菱電機的資料製作)
將來計劃配備於RF IC
包絡跟蹤技術不僅可以利用上述專用控制IC來支持,在不久的將來還計劃嵌入RF收發器IC等使用。富士通半導體預定2012年5月上旬開始樣品供貨配備包絡跟蹤控制功能的多模及多頻型RF收發器IC「MB86L11A」。這是業界首款配備包絡跟蹤控制功能的RF收發器IC。此外,美國高通公司等從事智能手機晶元組業務的大企業好像也都在考慮標配該技術。
不過,包絡跟蹤也存在課題。由於電源電壓高速切換,信號的失真特性會劣化,相鄰通道的漏電功耗可能會增大。作為解決對策,瑞薩電子通過提前使發送信號失真(預失真)減輕了劣化,瑞薩電子認為「需要探討類似的補償技術」。
提高元件自身的效率
還有廠商打算通過提高PA元件自身的特性來提高效率,以降低耗電量。例如美國威訊聯合半導體(RF Micro Devices)於2012年2月底發布了可將LTE發送時的功率附加效率提高至42~44%左右的PA「ultra-high efficiency PA」 注3)。
注3)可用於放大W-CDMA的頻帶1、2、3、4、5、8,以及LTE的頻帶4、7、11、13、17、18、20、21。
另外,富士通半導體2011年底開始供貨多頻型PA,通過在PA元件中利用與富士通研究所共同開發的高耐壓晶體管「EBV-Transistor」提高了效率。這是一款利用CMOS技術設計的PA,能夠通過一個封裝支持W-CDMA和HSPA利用的3個頻帶的放大(圖24)。據富士通半導體介紹,使用頻率較高的中低輸出時的效率非常高。
圖24:富士通的CMOS制PA支持3個頻帶
富士通半導體開發的CMOS制PA利用一枚晶元實現了W-CDMA/HSPA的頻帶Ⅰ(2.1GHz頻帶)、頻帶Ⅴ(850MHz頻帶)、頻帶Ⅸ(1.7GHz頻帶)的放大。尺寸為4mm×3.5mm×0.7mm。
減少反射波降低耗電量
另外還有不在PA上下工夫,而是通過導入RF電路的周邊技術來降低電力損耗的案例,比如插入隔離器來減少反射波。
隔離器是僅通過單向信號的部件,如果在PA和天線之間插入隔離器,可以阻止從天線側逆流進入的信號。
最近的智能手機天線一般設置在機身側面等,天線阻抗會隨著用戶握持方法的不同而大幅變動。因此,RF發送部會產生阻抗不匹配現象,從而導致PA的輸出信號作為反射波返回,這會使S/N惡化。
反射越多,PA的發送電力越大,所以會導致耗電量的增加。插入隔離器可以去除反射波,從而降低耗電量。
使用隔離器會導致部件數量增加。因此,海外的終端廠商大都不願意採用。不過開發商期待,隨著對降低RF電路耗電量的關注度越來越高,採用的海外終端廠商也會增加。比如,隔離器開發企業之一村田製作所開發出了將PA、濾波器以及隔離器(穩定器)收納在一個封裝內的PA模塊,並且已開始供貨(圖25)。該公司通過集成化縮小了產品尺寸,並以此為優勢向日本國內外的終端廠商積極促銷。
⑺ 對集成電路版圖優化該如何著手學習
想要優化版圖,首先要對線路圖有一定的了解,另外對產品後續測試中出現的一些問題有所掌握。
對電路圖有一定了解是為了更好的去布局布線,優化原來版圖中的一些不足。比如一些走線是否合理,有些信號線是否需要特殊處理、某些不走大電流的線是否可以縮減等等。
對產品後續測試中出現問題有一定了解是為了判斷這些問題是否能通過版圖優化來完成。 比如說一些敏感地方是否需要加一些屏蔽環等等。
總之 優化電路要對此產品有一個全面的認識,既然是優化,起碼要保證性能能夠提高或者版圖面積能夠縮減。希望對你有幫助。
⑻ 從哪幾方面優化電路設計
1.客戶需求分析:我覺得這點很重要,往往很多工程師都不注意,沖沖忙忙設計,做完了才發現設計出來的東西不是客戶要的東西,或沒完全達到客戶的要求,所以客戶需求分析到設計說明書一定要做細,把每個需求弄清楚。包括產品電壓、功耗、溫升、認證等。
2.原理設計:在滿足客戶需求前提下,檢查原理圖中每個功能模塊的設計參數,滿足參數的前提下檢查每個元器件品牌型號,保證參數前提下減少冗餘,選擇更低價格、更方便采購的品牌和型號,以提高產品價格和假貨速度方面的競爭力。
3.PCB布局:要根據布局規則和信號完整性逐條檢查。
4.結構檢查:設計的板子能否順利裝配到外殼里,往往是被很多電子工程師忽略的事情,設計出來的東西通常無法裝配到外殼里,或外殼空間太小、沒有考慮散熱等。
⑼ CPU電路圖怎麼設計出來的
CPU設計的流程:
隨著工藝的發展,半導體晶元的集成化程度越來越高,設計的系統越來越復雜,規模越來越大,性能的需求越來越高,功耗也越來越大,給晶元設計工程師和EDA廠商帶來了新的挑戰。晶元的設計方法也隨著發生了改變,經歷了從早期的手工設計階段、計算機輔助設計階段,計算機輔助工程階段,電子自動化設計階段,發展到系統晶元階段。
1、設計定義和可綜合的RTL代碼。設計定義描述晶元的總體結構、規格參數、模塊劃分、使用的介面等。然後設計者根據硬體設計所劃分出的功能模塊,進行模塊設計或者復用已有的IP核,通常使用硬體描述語言在寄存器傳輸級描述電路的行為,採用Verilog/VHDL描述各個邏輯單元的連接關系,以及輸入/輸出埠和邏輯單元之間的連接關系。門級網表使用邏輯單元對電路進行描述,採用例化的方法組成電路,以及定義電路的層次結構。前模擬,也稱為RTL級模擬或功能模擬。通過HDL模擬器驗證電路邏輯功能是否有效,在前模擬時,通常與具體的電路實現無關,沒有時序信息。
2、邏輯綜合。建立設計和綜合環境,將RTL源代碼輸入到綜合工具,例如Design Compiler,給設計加上約束,然後對設計進行邏輯綜合,得到滿足設計要求的門級網表。門級網表可以以ddc的格式存放。電路的邏輯綜合一般由三步組成:轉化、邏輯優化和映射。首先將RTL源代碼轉化為通用的布爾等式(GTECH格式);邏輯優化的過程嘗試完成庫單元的組合,使組合成的電路能最好的滿足設計的功能、時序和面積的要求;最後使用目標工藝庫的邏輯單元映射成門級網表,映射線路圖的時候需要半導體廠商的工藝技術庫來得到每個邏輯單元的延遲。綜合後的結果包括了電路的時序和面積。
3、版圖規劃。在得到門級網表後,把結果輸入到JupiterXT做設計的版圖規劃。版圖規劃包含宏單元的位置擺放、電源網路的綜合和分析、可布通性分析、布局優化和時序分析等。
4、單元布局和優化。單元布局和優化主要定義每個標准單元(Cell)的擺放位置,並根據擺放的位置進行優化。EDA工具廣泛支持物理綜合,即將布局和優化與邏輯綜合統一起來,引入真實的連線信息,減少時序收斂所需要的迭代次數。把設計的版圖規劃和門級網表輸入到物理綜合工具,例如Physical Compiler進行物理綜合和優化。在PC中,可以對設計在時序、功耗、面積和可布線性進行優化,達到最佳的結果質量。
5、靜態時序分析(STA)、形式驗證(FV)和可測性電路插入(DFT)。
靜態時序分析是一種窮盡分析方法,通過對提取的電路中所有路徑的延遲信息的分析,計算出信號在時序路徑上的延遲,找出違背時序約束的錯誤,如建立時間和保持時間是否滿足要求。在後端設計的很多步驟完成後都要進行靜態時序分析,如邏輯綜合之後,布局優化之後,布線完成之後等。
形式驗證是邏輯功能上的等效性檢查,根據電路的結構判斷兩個設計在邏輯功能上是否相等,用於比較RTL代碼之間、門級網表與RTL代碼之間,以及門級網表之間在修改之前與修改之後功能的一致性。
可測性設計。通常,對於邏輯電路採用掃錨鏈的可測性結構,對於晶元的輸入/輸出埠採用邊界掃描的可測性結構,增加電路內部節點的可控性和可觀測性,一般在邏輯綜合或物理綜合之後進行掃錨電路的插入和優化。
6、後布局優化,時鍾樹綜合和布線設計。在物理綜合的基礎上,可以採用Astro工具進一步進行後布局優化。在優化布局的基礎上,進行時鍾樹的綜合和布線。Astro在設計的每一個階段,都同時考慮時序、信號、功耗的完整性和面積的優化、布線的擁塞等問題。其能把物理優化、參數提取、分析融入到布局布線的每一個階段,解決了設計中由於超深亞微米效應產生的相互關聯的復雜問題。
7、寄生參數的提取。提取版圖上內部互連所產生的寄生電阻和電容值。這些信息通常會轉換成標准延遲的格式被反標回設計,用於靜態時序分析和後模擬。有了設計的版圖,使用Sign-Off參數提取的工具,如Star-RCXT進行寄生參數的提取,其可以設計進行RC參數的提取,然後輸入到時序和功耗分析工具進行時序和功耗的分析。
8、後模擬,以及時序和功耗分析。後模擬也叫門級模擬、時序模擬、帶反標的模擬,需要利用局部布線後獲得的精確延遲參數和網表進行模擬、驗證網表的功能和時序是否正確。如Primetime-SI能進行時序分析,以及信號完整性分析,可以做串擾延遲分析、IR drop(電壓降)的分析和靜態時序分析。在分析的基礎上,如發現設計中還有時鍾違規的路徑,Primetime-SI可以自動為後端工具如Astro產生修復文件。PrimePower具有門級功耗的分析能力,能驗證整個IC設計中的平均峰值功耗,幫助工程師選擇正確的封裝,決定散熱和確證設計的功耗。在設計通過時序和功耗分析之後,PrimeRail以Star-RCXT、HSPICE、Nanosim和PrimeTime的技術為基礎,為設計進行門級和晶體管級靜態和動態的電壓降分析,以及電遷移的分析。
9、ECO(工程修改命令)修改。當在設計的最後階段發現個別路徑有時序問題或者邏輯錯誤時,有必要對設計的部分進行小范圍的修改和重新布線。ECO修改只對版圖的一小部分進行修改而不影響到晶元其餘部分的布局布線,保留了其他部分的時序信息沒有改變。
10、物理驗證。物理驗證是對版圖的設計規則檢查(DRC)及邏輯圖網表和版圖網表比較(LVS)。將版圖輸入Hercules,進行層次化的物理驗證,以確保版圖和線路圖的一致性,其可以預防、及時發現和修正設計在設計中的問題。其中DRC用以保證製造良率,LVS用以確認電路版圖網表結構是否與其原始電路原理圖(網表)一致。LVS可以在器件級及功能級進行網表比較,也可以對器件參數,如MOS電路溝道寬/長、電容/電阻值等進行比較。
在完成以上步驟之後,設計就可以簽收、交付到晶元製造廠了(Tape out)。
⑽ 如何對所設計的集成電路進行優化設計
首先應看是數字集成電路還是模擬集成電路的優化
如果是數字集成電路,通常是對功耗和速度進行優化,主要是對晶體管尺寸和門電路結構進行調整
如果是模擬集成電路,就要看你的設計目標是什麼了,模擬的性能參數有很多,增益、功耗、雜訊等等,他們之間都是存在折衷關系的,不可能同時都達到最好,要根據你的設計目標進行優化