1. 單相橋式整流電路可分為哪幾種電路
單相橋式全控整流電路,由4個可控硅組成橋式整流,能控制交流輸入和直流輸出。
單相橋式半控整流電路,組成形式有多種。最常見的方式為2隻可控硅,2隻整流管,由可控硅控制交流輸入端,直流輸出不控制。還有一種簡單控制電路,在普通橋式整流前加一隻交流型固態繼電器控制整流橋交流輸入。相對於對交流輸入和直流輸出均能控制的全控制整流電路,只能控制交流輸入端或直流輸出端的整流電路稱為半控整流電路。
單相橋式全控整流電路用四個晶閘管,兩只晶閘管接成共陰極,兩只晶閘管接成共陽極,每一隻晶閘管是一個橋臂。
在u2正半波的(0~α)區間,晶閘管VT1、VT4承受正壓,但無觸發脈沖,處於關斷狀態。假設電路已工作在穩定狀態,則在0~α區間由於電感釋放能量,晶閘管VT2、VT3維持導通。
在u2正半波的ωt=α時刻及以後,ωt=α處觸發晶閘管VT1、VT4使其導通,電流沿a→VT1→L→R→VT4→b→Tr的二次繞組→a流通,此時負載上有輸出電壓(ud=u2)和電流。電源電壓反向加到晶閘管VT2、VT3上,使其承受反壓而處於關斷狀態。
在u2負半波的(π~π+α)區間,當ωt=π時,電源電壓自然過零,感應電勢使晶閘管VT1、VT4繼續導通。在電壓負半波,晶閘管VT2、VT3承受正壓,因無觸發脈沖,VT2、VT3處於關斷狀態。
在u2負半波的ωt=π+α時刻及以後,ωt=π+α處觸發晶閘管VT2、VT3使其導通,電流沿b→VT3→L→R→VT2→a→Tr的二次繞組→b流通,電源電壓沿正半周期的方向施加到負載上,負載上有輸出電壓(ud=-u2)和電流。此時電源電壓反向加到VT1、VT4上,使其承受反壓而變為關斷狀態。晶閘管VT2、VT3一直要導通到下一周期ωt=2π+α處再次觸發晶閘管VT1、VT4為止。
在單向橋式半控整流電路中,VT1和VD4組成一對橋臂,VD2和VT3組成另一對橋臂。在u正半周,若4個管子均不導通,負載電流id為零,ud也為零,VT1、VD4串聯承受電壓u,設VT1和VD4的漏電阻相等,則各承受u的一半。若在觸發角?處給VT1加觸發脈沖,VT1和VD4即導通,電流從電源a端經VT1、R、VD4流回電源b端。當u過零時,流經晶閘管的電流也降到零,VT1和VD4關斷。
在u負半周,仍在觸發延遲角?處觸發VD2和VT3,VD2和VT3導通,電流從電源b端流出,經VT3、R、VD2流回電源a端。到u過零時,電流又降為零,VD2和VT3關斷。此後又是VT1和VD4導通,如此循環地工作下去。晶閘
管承受的最大正向電壓和反向電壓分別為根號2/2·U和根號2·U。
由於在交流電源的正負半周都有整流輸出電流流過負載,故該電路為全波整流。在u一個周期內,整流電壓波形脈動2次,脈動次數多於半波整流電路,該電路屬於雙脈波整流電路。
2. 單相全波整流電路得到的直流電流脈動率是
50Hz交流電,全波整流後得到IOO個脈動波頭,脈動率為100。
3. 單相半波、全波、橋式整流電路各有什麼特點
1、單相橋式整流電路的特點:使用的整流器件較全波整流時多一倍,整流電壓脈動與全波整內流相同,每個器容件所承受的反向電壓為電源電壓峰值。
2、單相半波整流電路的特點:電路簡單,使用器件少;無濾波電路時,整流電壓的直流分量較小,Vo=0.45V2;整流電壓的脈動較大。
3、單相全波整流電路的特點:使用的整流器件較半波整流時多一倍,變壓器的利用率比半波整流時高,變壓器二次繞組需中心抽頭。
(3)單相全波整流電路擴展閱讀:
1、在全波和橋式整流電路中,都將輸入交流電壓的負半周轉到正半周或將正半周轉到負半周,這一點與半波整流電路不同,在半波整流電路中,將輸入交流電壓一個半周切除。
2、在整流電路中,輸入交流電壓的幅值遠大於二極體導通的管壓降,所以可將整流二極體的管壓降忽略不計。
3、對於倍壓整流電路能夠輸出比輸入交流電壓更高的直流電壓,但這種電路輸出電流的能力較差,所以具有高電壓,小電流的輸出特性。
4、分析上述整流電路時,主要用二極體的單向導電特性,整流二極體的導通電壓由輸入交流電壓提供。
4. 全波整流電路圖及其工作原理
在小功率直流電源中,常見的幾種整流電路有單相半波、全波、橋式和三相整流電路等
整流(和濾波)電路中既有交流量,又有直流量。對這些量經常採用不同的表述方法:輸入(交流)——用有效值或最大值;輸出(直流)——用平均值;二極體正向電流——用平均值;二極體反向電壓——用最大值。
單相全波橋式整流器電路的工作原理
由圖可看出,電路中採用四個二極體,互相接成橋式結構。利用二極體的電流導向作用,在交流輸入電壓U2的正半周內,二極體D1、D3導通,D2、D4截止,在負載RL上得到上正下負的輸出電壓;在負半周內,正好相反,D1、D3截止,D2、D4導通,流過負載RL的電流方向與正半周一致。因此,利用變壓器的一個副邊繞組和四個二極體,使得在交流電源的正、負半周內,整流電路的負載上都有方向不變的脈動直流電壓和電流。橋式整流的名稱只是說明電路連接方法是橋式的接法,橋式整流二極體:大家常用的一般是由4隻單個二極體封裝在一起的元件,取名橋式整流二極體,整流橋或全橋二極體。
參考資料來源:網路:全波整流
5. 什麼是單相半波整流電路
單相是相對於三相而言。我們家用照明燈用的就是單相電。
半波整流是相對於全波整流。版
單相全波整流電路用權兩只整流二極體,需要變壓器次級有中間抽頭。也可以用四隻整流二極體組成橋式整流電路,變壓器次級不需要抽頭。
單相半波整流電路用一隻整流二極體。
想一想正弦函數的圖象。全波整流把圖象的負半周「反到」X軸的上部,整流前後的電壓有效值變化不大。
半波整流把圖象的負半周削掉了,整流後的電壓有效值接近整流前的一半。
6. 單相半波、全波、橋式整流電路各有什麼特點
單相半波來整流電路的特點如下自:
(1) 電路簡單,使用器件少。
(2)無濾波電路時,整流電壓的直流分量較小,Vo=0.45V2
(3)整流電壓的脈動較大。
(4)變壓器的利用率低。
單相全波整流電路的特點如下:
(1)使用的整流器件較半波整流時多一倍。
(2)整流電壓脈動較小,比半波整流小一半。無濾波電路時的輸出電壓Vo=0.9V2。
(3)變壓器的利用率比半波整流時高。
(4)變壓器二次繞組需中心抽頭。
(5)整流器件所承受的反向電壓較高。
單相橋式整流電路的特點如下:
(1)使用的整流器件較全波整流時多一倍。
(2)整流電壓脈動與全波整流相同。
(3)每個器件所承受的反向電壓為電源電壓峰值。
(4)變壓器利用率較全波整流電路高。
7. 單相全控橋式整流電路的工作原理和工作過程是什麼
單相橋式全控整流電路電路主電路結構如下圖所示,其基本工作原理分析如下:單相橋式全控整流電路用四個晶閘管,兩只晶閘管接成共陰極,兩只晶閘管接成共陽極,每一隻晶閘管是一個橋臂。
晶閘管VT1、VT4承受正壓,但無觸發脈沖,處於關斷狀態。假設電路已工作在穩定狀態,則在0~α區間由於電感釋放能量,晶閘管VT2、VT3維持導通。
在ωt=π+α處觸發晶閘管VT2、VT3使其導通,電流沿b→VT3→L→R→VT2→a→Tr的二次繞組→b流通,電源電壓沿正半周期的方向施加到負載上,負載上有輸出電壓 (ud=-u2)和電流。
此時電源電壓反向加到VT1、VT4上,使其承受反壓而變為關斷狀態。晶閘管VT2、VT3一直要導通到下一周期ωt=2π+α處再次觸發晶閘管VT1、VT4為止。
(7)單相全波整流電路擴展閱讀:
將交流降壓電路輸出的電壓較低的交流電轉換成單向脈動性直流電,這就是交流電的整流過程,整流電路主要由整流二極體組成。經過整流電路之後的電壓已經不是交流電壓,而是一種含有直流電壓和交流電壓的混合電壓。習慣上稱單向脈動性直流電壓。
因為輸入交流市電的頻率是50Hz,半波整流電路去掉了交流電的半周,沒有改變單向脈動性直流電中交流成分的頻率;全波和橋式整流電路相同,用到了輸入交流電壓的正、負半周,使頻率擴大一倍為100Hz,所以這種單向脈動性直流電的交流成分主要成分是100Hz的。
這是因為整流電路將輸入交流電壓的一個半周轉換了極性,使輸出的直流脈動性電壓的頻率比輸入交流電壓提高了一倍,這一頻率的提高有利於濾波電路的濾波。
在半波整流電路中,當整流二極體截止時,交流電壓峰值全部加到二極體兩端。對於全波整流電路而言也是這樣,當一隻二極體導通時,另一隻二極體截止,承受全部交流峰值電壓。所以對這兩種整流電路,要求電路的整流二極體其承受反向峰值電壓的能力較高。
對於橋式整流電路而言,兩只二極體導通,另兩只二極體截止,它們串聯起來承受反向峰值電壓,在每隻二極體兩端只有反向峰值電壓的一半,所以對這一電路中整流二極體承受反向峰值電壓的能力要求較低。
8. 單相全波整流電路得到的直流電流脈動率
如果脈動率是指脈動頻率,50hz 的交流電全波整流得到的100hz的脈動直流電。