㈠ 電度表中IMP EXP ToT 分別代表什麼
IMP,EXP,TOT分別表示正向電能、反向電能、電能總和。
電能表,是用來測量電能的儀表,又稱電度表,火表,千瓦小時表,指測量各種電學量的儀表。顯示器上,IMP,EXP,TOT再D區,分別表示正向電能、反向電能、電能總和。
電度表常用分類:
1,電能表按其使用的電路可分為直流電能表和交流電能表。交流電能表按其相線又可分為單相電能表、三相三線電能表和三相四線電能表。
2,電能表按其工作原理可分為電氣機械式電能表和電子式電能表(又稱靜止式電能表、固態式電能表)。電氣機械式電能表用於交流電路作為普通的電能測量儀表,其中最常用的是感應型電能表。電子式電能表可分為全電子式電能表和機電式電能表。
3,電能表按其結構可分為整體式電能表和分體式電能表。
4,電能表按其用途可分為有功電能表、無功電能表、最大需量表、標准電能表、復費率分時電能表、預付費電能表、損耗電能表和多功能電能表等。
5,電能表按其准確度等級可分為普通安裝式電能表(0.2、0.5、1.0、2.0、3.0級)和攜帶式精密級電能表(0.01、0.02、0.05、0.1、0.2級)。
㈡ 在rcl串聯交流電路中求電源電壓和Vc的關系直接一次性用Vc=Xc*Vac/Ztot 然後用指
串聯電路電流相等,用電流做參考相位;
並聯電路電壓相等,用電壓做參考相位。
你貼一題出來。
㈢ 串聯諧振的公式有哪些
是當X發生的事實諧振大號 = X Ç允許構建一個公式,允許諧振頻率(ƒ計算從僅僅為系列將L的值和C.電子最常用的式的電路的) LCR電路的諧振頻率為:
在許多應用中,電路裝配後需要仔細調整通常是決定不使用純LC電路的決定因素。在許多應用中,它們已被不需要調節的固態陶瓷濾波器和諧振晶體調諧電路所取代。但是,有時固態濾波器可能會在所需頻率的諧波(多個)處產生多個諧振頻率的問題。然後也可以包括單個可調LC調諧電路以克服該問題。
串聯電路計算。
在串聯LCR電路中,尤其是在諧振時,發生了很多事情,因此計算通常是多階段的。在本系列的較早模塊中已經描述了許多常用計算的公式,現在的區別在於,查找有關電路條件的相關信息的任務依賴於選擇適當的公式並以適當的順序使用它們。
例如,在下面的問題,以紅色顯示在值項目是必需的,但是請注意V Ç和V 大號不容被首先計算出,作為用於ƒ的值[R (和另一式)需要計算電抗。但是有時候,通過記住上麵灰色面板中有關串聯諧振(也叫變頻諧振)的記錄,可以使這項工作變得更容易,無需計算V L,因為在諧振時X C和X L相等,因此兩端將產生相等的電壓。但是請注意,V L與在L兩端測得的總電壓不同。內部電阻兩端的電壓(在90°至VL)需要包括在內,並且由於V L和內部電阻電壓(VR L)之間的相位差,可測量的電感器總電壓V L TOT將是V L和VR L的相量之和。
回復者:華天電力
㈣ 電子電路里三極體型號mje13003E與三極體mje13005有什麼區別
你好,這是UTC公司生產的管子
下圖為13003和13005的參數,它們的區別就是Ic、反向電壓等參數不同,具體見圖。
㈤ CPU供電電路中的MOS管可以隨便更換嗎
看了一下論壇上關於MOS管的帖子,說的和「超越」大概一樣,就是新MOS管的電壓、電流、功率值要大於等於原MOS管的電壓、電流、功率值。也就是說,換MOS管的時候,要了解各個MOS管的參數,這可是個不小的工作量,而且有些MOS管的PDF圖紙在網上找不到,比如「K3918」,至於可不可以混用,只要滿足上面的要求,是可以混用的。帖子里還說,09N03和06N03可以用於所有CPU供電電路中,基本通吃。我在網上搜了一下09N03和06N03的PDF看了一下:09N03:V DS=25V、I D=50A、P tot=63W(25 °C)06N03:V DS=25V、I D=50A、P tot=83W(25 °C)同時我還順便下載了04N03的PDF:04N03:V DS=25V、I D=80A、P tot=107W(25°C)我發現N03前面的數字越小,這種管子的功率越高,不知道是不是這樣。聽朋友說,在更換MOS管的時候,不同的主板,如果都是775的CPU,那麼MOS管是可以互換的,上管之間也可以混用,下管之間也可以混用,以這樣的原則來代換MOS管應該沒問題吧。在帖子里還看到MOS管的DS極是可以顛倒的,因為MOS管在製作的過程中DS是對稱設計的。那我就想不明白,既然是對稱的,為什麼用萬用表量S到D有500的數值,D到S卻無窮大。有沒有高手可以指點一下呢?
㈥ 退耦電容有幾種接法各起什麼作用有什麼好處
電容選擇上都採用的MLCC的電容進行退耦,常見的MLCC的電容因為介質的不同可以進行不同的分類,可以分成NPO的第一類介質,X7R和Z5V等的第二、三類介質。EIA對第二、三類介質使用三個字母,按照電容值和溫度之間關系詳細分類為:
第一個數字表示下限類別溫度:
X:-55度;Y:-30度;Z:+10度
第二個數字表示上限溫度:
4:+65度;5:+85度;6:105度;7:125度;8:150度;
第三個數字表示25度容量誤差:
P:+10%/-10%;R:+15%/-15%;S:+22%/-22%;
T:+22%/-33%;U:+22%/-56%;V:+22%/-82%
例如我們常見的Z5V,表示工作溫度是10度~85度,標稱容量偏差+22%/-82%,
為了做成純文檔的格式,盡量採用文字說明,不不採用圖片,這樣給理解帶來一定的困難,看官們見笑了。設電源引腳和地引腳的封裝電感和引線電感之和分別為:Lv和Lg。兩個互補的MOS管(接地的NMOS和接電源的PMOS)簡單作為開關使用。假設初始時 刻傳輸線上各點的電壓和電流均為零,在某一時刻器件將驅動傳輸線為高電平,這時候器件就需要從電源管腳吸收電流。在時間T1,使PMOS管導通,電流從PCB板上的VCC流入,流經封裝電感Lv,跨越PMOS管,串聯終端電阻,然後流入傳輸線,輸出電流幅度為VCC/(2×Z0)。電流在傳輸線網路上持續一個完整的返回(Round-Trip)時間,在時間T2結束。之後整個傳輸線處於電荷充滿狀態,不需要額外流入電流來維持。當電流瞬間涌過封裝電感Lv時,將在晶元內部的電源提供點產生電壓被拉低的擾動。該擾動在電源中被稱之為同步開關雜訊(SSN,Simultaneous Switching Noise;SSO,Simultaneous Switching Output Noise)或Delta I雜訊。
在時間T3,關閉PMOS管,這一動作不會導致脈沖雜訊的產生,因為在此之前PMOS管一直處於打開狀態且沒有電流流過的。同時打開NMOS管,這時傳輸線、地平面、封裝電感Lg以及NMOS管形成一迴路,有瞬間電流流過開關B,這樣在晶元內部的地結點處產生參考電平點被抬高的擾動。該擾動在電源系統中被稱之為地彈雜訊(Ground Bounce,我個人讀著地tan)。
實際電源系統中存在晶元引腳、PCB走線、電源層、底層等任何互連線都存在一定電感值,因此上面就IC級分析的SSN和地彈雜訊在進行Board Level分析時,以同樣的方式存在,而不僅僅局限於晶元內部。就整個電源分布系統來說(Power Distribute System)來說,這就是所謂的電源電壓塌陷雜訊。因為晶元輸出的開關操作以及晶元內部的操作,需要瞬時的從電源抽取較大的電流,而電源特性來說不能快速響應該電流變化,高速開關電源開關頻率也僅有MHz量級。為了保證晶元附近電源線上的電壓不至於因為SSN和地彈雜訊降低超過器件手冊規定的容限,這就需要在晶元附近為高速電流需求提供一個儲能電容,這就是我們所要的退耦電容。
如果電容是理想的電容,選用越大的電容當然越好了,因為越大電容越大,瞬時提供電量的能力越強,由此引起的電源軌道塌陷的值越低,電壓值越穩定。但是,實際的電容並不是理想器件,因為材料、封裝等方面的影響,具備有電感、電阻等附加特性;尤其是在高頻環境中更表現的更像電感的電氣特性。我們都知道實際電容的模型簡單的以電容、電阻和電感建立。除電容的容量C以外,還包括以下寄生參數:
1、等效串聯電阻ESR(Resr):電容器的等效串聯電阻是由電容器的引腳電阻與電容器兩個極板的等效電阻相串聯構成的。當有大的交流電流通過電容器,Resr使電容器消耗能量(從而產生損耗),由此電容中常用用損耗因子表示該參數。
2、等效串聯電感ESL(Lesl):電容器的等效串聯電感是由電容器的引腳電感與電容器兩個極板的等效電感串聯構成的。
3、等效並聯電阻EPR Rp :就是我們通常所說的電容器泄漏電阻,在交流耦合應用、存儲應用(例如模擬積分器和采樣保持器)以及當電容器用於高阻抗電路時,Rp是一項重要參數,理想電容器中的電荷應該只隨外部電流變化。然而實際電容器中的Rp使電荷以RC時間常數決定的速度緩慢泄放。
還是兩個參數RDA、CDA 也是電容的分布參數,但在實際的應該中影響比較小,這就省了吧。所以電容重要分布參數的有三個:ESR、ESL、EPR。其中最重要的是ESR、 ESL,實際在分析電容模型的時候一般只用RLC簡化模型,即分析電容的C、ESR、ESL。因為寄生參數的影響,尤其是ESL的影響,實際電容的頻率特性表現出阻抗和頻率成「V」字形的曲線,低頻時隨頻率的升高,電容阻抗降低;當到最低點時,電容阻抗等於ESR;之後隨頻率的升高,阻抗增加,表現出電感特性(歸功於ESL)。因此對電容的選擇需要考慮的不僅僅是容值,還需要綜合考慮其他因素。包括: 所有考慮的出發點都是為了降低電源地之間的感抗(滿足電源最大容抗的條件下),在有瞬時大電流流過電源系統時,不至於產生大的雜訊干擾晶元的電源地引腳。選用常見的有兩種方法計算所需的電容:
簡單方法:由輸出驅動的變化計算所需退耦電容的大小;
復雜方法:由電源系統所允許的最大的感抗計算退耦電容的大小。
我們假設一個模型,在一個Vcc=3.3V的SRAM系統中,有36根輸出數據線,單根數據線的負載為Cload=30pF(相當的大了),輸出驅動需要在Tr=2ns(上升時間)內將負載從0V驅動到3.3V,該晶元資料里規定的電源電壓要求是3.3V+0.3V/-0.165V。
可以看出在SRAM的輸出同時從0V上升到3.3V時,從電源系統抽取的電流最大,我們選擇此時計算所需的退耦電容量。我們採用第一種計算方法進行計算,單根數據線所需要的電流大小為:
I=Cload×(dV/dt)=30pF×(3V/2ns)=45mA;
36根數據線同時翻轉時的電流大小為Itot=45mA×36=1.62A。晶元允許的供電電壓降為0.165V,假設我們允許該晶元在電源線上因為SSN引入的雜訊為50mV,那麼所需要的電容退耦電容為:
C=I×(dt/dV)=1.62A×(2ns/50mV)=64nF;
從標准容值表中選用兩個34nF的電容進行並聯以完成該值,正如上面提到的退耦電容的選擇在實際中並不是越大越好,因為越大的電容具有更大的封裝,而更大的封裝可能引入更大的ESL,ESL的存在會引起在IC引腳處的電壓抖動(Glitching),這個可以通過V=L×(di/dt)公式來說明,常見貼片電容的L大約是1.5nH,那麼V=1.5nH×(1.62A/2ns)=1.2V,考慮整個Bypass迴路的等效電感之後,實際電路中glitch會小於該值。通過前人做的一些模擬的和經驗的數據來看,退耦電容上的Glitch與同時驅動的匯流排數量有很大關系。
因為ESL在高頻時覺得了電源線上的電流提供能力,我們採用第二種方法再次計算所需的退耦電容量。這中方法是從Board Level考慮單板,即從Bypass Loop的總的感抗角度進行電容的計算和選擇,因此更具有現實意義,當然需要考慮的因素也就越多,實際問題的解決總是這樣,需要一些折中,需要一點妥協。
同樣使用上面的假設,電源系統的總的感抗最大:
Xmax=(dV/dI)=0.05/1.62=31m歐;
在此,需要說明我們引入的去耦電容是為了去除比電源的去耦電容沒有濾除的更高頻率的雜訊,例如在電路板級參數中串聯電感約為Lserial=5nH,那麼電源的退耦頻率:
Fbypass=Xmax/(2pi×Lserial)=982KHz,這就是電源本身的濾波頻率,當頻率高於此頻率時,電源電路的退耦電路不起作用,需要引入晶元的退耦電容進行濾波。另外引入另外一個參數——轉折點頻率Fknee,該頻率決定了數字電路中主要的能量分布,高於該頻率的分量認為對數字電路的上升沿和下降沿變化沒有貢獻。在High-Speed Digital Design:A Hand Book of Black Magic這本書的第一章就詳細的討論了該問題,在此不進行詳細說明。只是引入其中推倒的公式:
Fknee=(1/2×Tr)=250MHz,其中Tr=2ns;
可見Fknee遠遠大於Fbypass,5nH的串聯電感肯定是不行了。那麼計算:
Ltot=Xmax/(2pi×Fknee)=(Xmax×Tr/pi)=19.7pH;
如前面提到的常見的貼片電容的串聯電感在1.5nH左右,所需要的電容個數是:
N=(Lserial/Ltot)=76個,另外當頻率降到Fbypass的時候,也應該滿足板級容抗需要即:
Carray=(1/(2pi×Fbypass×Xmax))=5.23uF;
Celement=Carray/N=69nF.
1、電容容值;2、電介質材料;3、電容的幾何尺寸和放置位置。
㈦ 怎麼計算串聯諧振的公式
計算串聯諧振的公式為Z=√R2+XC-XL2=R。串聯諧振在具有電阻R、電感L和電容C元件的交流電路中,電路兩端的電壓與其中電流位相一般是不同的。
如果調節電路元件的參數或電源頻率,可以使它們位相相同,整個電路呈現為純電阻性。電路達到這種狀態稱之為諧振。在諧振狀態下,電路的總阻抗達到極值或近似達到極值。
研究諧振的目的就是要認識這種客觀現象,並在科學和應用技術上充分利用諧振的特徵,同時又要預防它所產生的危害。按電路聯接的不同,有串聯諧振和並聯諧振兩種。
在電阻、電感及電容所組成的串聯電路內,當容抗XC與感抗XL相等時,即XC=XL,電路中的電壓U與電流I的相位相同,電路呈現純電阻性,這種現象叫串聯諧振(也稱為電壓諧振)。當電路發生串聯諧振時,電路的阻抗Z=√R2+XC-XL2=R,電路中總阻抗最小,電流將達到最大值。
(7)TOT電路擴展閱讀:
串聯諧振的特點:
1、所需電源容量大大減小。系列串聯諧振試驗裝置是利用諧振電抗器和被試品電容產生諧振,從而得到所需高電壓和大電流的,在整個系統中,電源只需要提供系統中有功消耗的部分,因此,試驗所需的電源功率只有試驗容量的1/Q倍(Q為品質因素)。
2、設備的重量和體積大大減小。串聯諧振電源中,不但省去了笨重的大功率調壓裝置和普通的大功率工頻試驗變壓器,而且,諧振激磁電源只需試驗容量的1/Q,使得系統重量和體積大大減小,一般為普通試驗裝置的1/5~1/10。
3、改善輸出電壓波形。諧振電源是諧振式濾波電路,能改善輸出電壓的波形畸變,獲得很好的正弦波,有效地防止了諧波峰值引起的對被試品的誤擊穿。
4、防止大的短路電流燒傷故障點。在諧振狀態,當被試品的絕緣弱點被擊穿時,電路立即脫諧(電容量變化,不滿足諧振條件),迴路電流迅速下降為正常試驗電流的1/Q。
而採用並聯諧振或者傳統試驗變壓器的方式進行交流耐壓試驗時,擊穿電流立即上升幾十倍,兩者相比,短路電流與擊穿電流相差數百倍。所以,串聯諧振能有效地找到絕緣弱點,又不存在大的短路電流燒傷故障點的憂患。
5、不會出現任何恢復過電壓。被試品發生擊穿閃絡時,因失去諧振條件,高電壓也立即消失,電弧立刻熄滅,裝置的保護迴路動作,切斷輸出。
㈧ 跪求初中物理所有公式、ToT
初中物理所有公式
物理量(單位) 公式 備注 公式的變形
速度V(m/S) v= S:路程/t:時間
重力G (N) G=mg m:質量 g:9.8N/kg或者10N/kg
密度ρ (kg/m3) ρ=m/V m:質量 V:體積
合力F合 (N) 方向相同:F合=F1+F2
方向相反:F合=F1—F2 方向相反時,F1>F2
浮力F浮
(N) F浮=G物—G視 G視:物體在液體的重力
浮力F浮
(N) F浮=G物 此公式只適用
物體漂浮或懸浮
浮力F浮
(N) F浮=G排=m排g=ρ液gV排 G排:排開液體的重力
m排:排開液體的質量
ρ液:液體的密度
V排:排開液體的體積
(即浸入液體中的體積)
杠桿的平衡條件 F1L1= F2L2 F1:動力 L1:動力臂
F2:阻力 L2:阻力臂
定滑輪 F=G物
S=h F:繩子自由端受到的拉力
G物:物體的重力
S:繩子自由端移動的距離
h:物體升高的距離
動滑輪 F= (G物+G輪)
S=2 h G物:物體的重力
G輪:動滑輪的重力
滑輪組 F= (G物+G輪)
S=n h n:通過動滑輪繩子的段數
機械功W
(J) W=Fs F:力
s:在力的方向上移動的距離
有用功W有
總功W總 W有=G物h
W總=Fs 適用滑輪組豎直放置時
機械效率 η= ×100%
功率P
(w) P=
W:功
t:時間
壓強p
(Pa) P=
F:壓力
S:受力面積
液體壓強p
(Pa) P=ρgh ρ:液體的密度
h:深度(從液面到所求點
的豎直距離)
熱量Q
(J) Q=cm△t c:物質的比熱容 m:質量
△t:溫度的變化值
燃料燃燒放出
的熱量Q(J) Q=mq m:質量
q:熱值
常用的物理公式與重要知識點
一.物理公式
單位) 公式 備注 公式的變形
串聯電路
電流I(A) I=I1=I2=…… 電流處處相等
串聯電路
電壓U(V) U=U1+U2+…… 串聯電路起
分壓作用
串聯電路
電阻R(Ω) R=R1+R2+……
並聯電路
電流I(A) I=I1+I2+…… 幹路電流等於各
支路電流之和(分流)
並聯電路
電壓U(V) U=U1=U2=……
並聯電路
電阻R(Ω) = + +……
歐姆定律 I=
電路中的電流與電壓
成正比,與電阻成反比
電流定義式 I=
Q:電荷量(庫侖)
t:時間(S)
電功W
(J) W=UIt=Pt U:電壓 I:電流
t:時間 P:電功率
電功率 P=UI=I2R=U2/R U:電壓 I:電流
R:電阻
電磁波波速與波
長、頻率的關系 C=λν C:波速(電磁波的波速是不變的,等於3×108m/s)
λ:波長 ν:頻率
二.知識點
1. 需要記住的幾個數值:
a.聲音在空氣中的傳播速度:340m/s b光在真空或空氣中的傳播速度:3×108m/s
c.水的密度:1.0×103kg/m3 d.水的比熱容:4.2×103J/(kg•℃)
e.一節干電池的電壓:1.5V f.家庭電路的電壓:220V
g.安全電壓:不高於36V
2. 密度、比熱容、熱值它們是物質的特性,同一種物質這三個物理量的值一般不改變。例如:一杯水和一桶水,它們的的密度相同,比熱容也是相同,
3.平面鏡成的等大的虛像,像與物體 關於平面鏡對稱。
3. 聲音不能在真空中傳播,而光可以在真空中傳播。
4. 超聲:頻率高於20000HZ的聲音,例:蝙蝠,超聲雷達;
5. 次聲:火山爆發,地震,風爆,海嘯等能產生次聲,核爆炸,導彈發射等也能產生次聲。
6. 光在同一種均勻介質中沿直線傳播。影子、小孔成像,日食,月食都是光沿直線傳播形成的。
7. 光發生折射時,在空氣中的角總是稍大些。看水中的物,看到的是變淺的虛像。
8. 凸透鏡對光起會聚作用,凹透鏡對光起發散作用。
9. 凸透鏡成像的規律:物體在2倍焦距之外成縮小、倒立的實像。在2倍焦距與1倍焦距之間,成倒立、放大的實像。 在1倍 焦距之內 ,成正立,放大的虛像。
10.滑動摩擦大小與壓力和表面的粗糙程度有關。滾動摩擦比滑動摩擦小。
11.壓強是比較壓力作用效果的物理量,壓力作用效果與壓力的大小和受力面積有關。
12.輸送電壓時,要採用高壓輸送電。原因是:可以減少電能在輸送線路上的損失。
13.電動機的原理:通電線圈在磁場中受力而轉動。是電能轉化為機械能 。
14.發電機的原理:電磁感應現象。機械能轉化為電能。話筒,變壓器是利用電磁感應原理。
15.光纖是傳輸光的介質。
16.磁感應線是從磁體的N極發出,最後回到S極
下面更清楚些
1、勻速直線運動的速度公式:
求速度:v=s/t
求路程:s=vt
求時間:t=s/v
2、變速直線運動的速度公式:v=s/t
3、物體的物重與質量的關系:G=mg (g=9.8N/kg)
4、密度的定義式
求物質的密度:ρ=m/V
求物質的質量:m=ρV
求物質的體積:V=m/ρ
4、壓強的計算。
定義式:p=F/S(物質處於任何狀態下都能適用)
液體壓強:p=ρgh(h為深度)
求壓力:F=pS
求受力面積:S=F/p
5、浮力的計算
稱量法:F浮=G—F
公式法:F浮=G排=ρ排V排g
漂浮法:F浮=G物(V排<V物)
懸浮法:F浮=G物(V排=V物)
6、杠桿平衡條件:F1L1=F2L2
7、功的定義式:W=Fs
8、功率定義式:P=W/t
對於勻速直線運動情況來說:P=Fv (F為動力)
9、機械效率:η=W有用/W總
對於提升物體來說:
W有用=Gh(h為高度)
W總=Fs
10、斜面公式:FL=Gh
11、物體溫度變化時的吸熱放熱情況
Q吸=cmΔt (Δt=t-t0)
Q放=cmΔt (Δt=t0-t)
12、燃料燃燒放出熱量的計算:Q放=qm
13、熱平衡方程:Q吸=Q放
14、熱機效率:η=W有用/ Q放 ( Q放=qm)
15、電流定義式:I=Q/t ( Q為電量,單位是庫侖 )
16、歐姆定律:I=U/R
變形求電壓:U=IR
變形求電阻:R=U/I
17、串聯電路的特點:(以兩純電阻式用電器串聯為例)
電壓的關系:U=U1+U2
電流的關系:I=I1=I2
電阻的關系:R=R1+R2
18、並聯電路的特點:(以兩純電阻式用電器並聯為例)
電壓的關系:U=U1=U2
電流的關系:I=I1+I2
電阻的關系:1/R=1/R1+1/R2
19、電功的計算:W=UIt
20、電功率的定義式:P=W/t
常用公式:P=UI
21、焦耳定律:Q放=I2Rt
對於純電阻電路而言:Q放=I2Rt =U2t/R=UIt=Pt=UQ=W
22、照明電路的總功率的計算:P=P1+P1+……
㈨ 【十萬火急】求大神幫忙設計一個直流穩壓電源
這個電路可以3-12伏可調,所以需要3份相同的電路,分別調到3伏、5伏、10伏即可。
㈩ 兩題電路題目... 求解答TOT (有圖~)
第1,L1和L2亮,L3和L4暗
第2,1/8A