1. 在不斷開電路的情況下,怎樣測量功率放大器的各級工作電流
射頻放功率放大器基本概念
射頻功率放大器(RF PA)是發射系統中的主要部分,其重要性不言而喻。在發射機的前級電路中,調制振盪電路所產生的射頻信號功率很小,需要經過一系列的放大(緩沖級、中間放大級、末級功率放大級)獲得足夠的射頻功率以後,才能饋送到天線上輻射出去。為了獲得足夠大的射頻輸出功率,必須採用射頻功率放大器。在調制器產生射頻信號後,射頻已調信號就由RF PA將它放大到足夠功率,經匹配網路,再由天線發射出去。
放大器的功能,即將輸入的內容加以放大並輸出。輸入和輸出的內容,我們稱之為「信號」,往往表示為電壓或功率。對於放大器這樣一個「系統」來說,它的「貢獻」就是將其所「吸收」的東西提升一定的水平,並向外界「輸出」。如果放大器能夠有好的性能,那麼它就可以貢獻更多,這才體現出它自身的「價值」。如果放大器存在著一定的問題,那麼在開始工作或者工作了一段時間之後,不但不能再提供任何「貢獻」,反而有可能出現一些不期然的「震盪」,這種「震盪」對於外界還是放大器自身,都是災難性的。
射頻功率放大器的主要技術指標是輸出功率與效率,如何提高輸出功率和效率,是射頻功率放大器設計目標的核心。通常在射頻功率放大器中,可以用LC諧振迴路選出基頻或某次諧波,實現不失真放大。除此之外,輸出中的諧波分量還應該盡可能地小,以避免對其他頻道產生干擾。
分類
根據工作狀態的不同,功率放大器分類如下:
傳統線性功率放大器的工作頻率很高,但相對頻帶較窄,射頻功率放大器一般都採用選頻網路作為負載迴路。射頻功率放大器可以按照電流導通角的不同,分為甲(A)、乙(B)、丙(C)三類工作狀態。甲類放大器電流的導通角為360°,適用於小信號低功率放大,乙類放大器電流的導通角等於180°,丙類放大器電流的導通角則小於180°。乙類和丙類都適用於大功率工作狀態,丙類工作狀態的輸出功率和效率是三種工作狀態中最高的。射頻功率放大器大多工作於丙類,但丙類放大器的電流波形失真太大,只能用於採用調諧迴路作為負載諧振功率放大。由於調諧迴路具有濾波能力,迴路電流與電壓仍然接近於正弦波形,失真很小。
開關型功率放大器(Switching Mode PA,SMPA),使電子器件工作於開關狀態,常見的有丁(D)類放大器和戊(E)類放大器,丁類放大器的效率高於丙類放大器。SMPA將有源晶體管驅動為開關模式,晶體管的工作狀態要麼是開,要麼是關,其電壓和電流的時域波形不存在交疊現象,所以是直流功耗為零,理想的效率能達到100%。
傳統線性功率放大器具有較高的增益和線性度但效率低,而開關型功率放大器具有很高的效率和高輸出功率,但線性度差。具體見下表:
電路組成
放大器有不同類型,簡化之,放大器的電路可以由以下幾個部分組成:晶體管、偏置及穩定電路、輸入輸出匹配電路。
1-1、晶體管
晶體管有很多種,包括當前還有多種結構的晶體管被發明出來。本質上,晶體管的工作都是表現為一個受控的電流源或電壓源,其工作機制是將不含內容的直流的能量轉化為「有用的」輸出。直流能量乃是從外界獲得,晶體管加以消耗,並轉化成有用的成分。不同的晶體管不同的「能力」,比如其承受功率的能力有區別,這也是因為其能獲取的直流能量的能力不同所致;比如其反應速度不同,這決定它能工作在多寬多高的頻帶上;比如其面向輸入、輸出端的阻抗不同,及對外的反應能力不同,這決定了給它匹配的難易程度。
1-2、偏置電路及穩定電路
偏置和穩定電路是兩種不同的電路,但因為他們往往很難區分,且設計目標趨同,所以可以放在一起討論。
晶體管的工作需要在一定的偏置條件下,我們稱之為靜態工作點。這是晶體管立足的根本,是它自身的「定位」。每個晶體管都給自己進行了一定的定位,其定位不同將決定了它自身的工作模式,在不同的定位上也存在著不同的性能表現。有些定位點上起伏較小,適合於小信號工作;有些定位點上起伏較大,適合於大功率輸出;有些定位點上索取較少,釋放純粹,適合於低雜訊工作;有些定位點,晶體管總是在飽和和截至之間徘徊,處於開關狀態。一個恰當的偏置點,是正常工作的礎。在設計寬頻功率放大器時,或工作頻率較高時,偏置電路對電路性能影響較大,此時應把偏置電路作為匹配電路的一部分考慮。
偏置網路有兩大類型,無源網路和有源網路。無源網路(即自偏置網路)通常由電阻網路組成,為晶體管提供合適的工作電壓和電流。它的主要缺陷是對晶體管的參數變化十分敏感,並且溫度穩定性較差。有源偏置網路能改善靜態工作點的穩定性,還能提高良好的溫度穩定性,但它也存在一些問題,如增加了電路尺寸、增加了電路排版的難度以及增加了功率消耗。
穩定電路一定要在匹配電路之前,因為晶體管需要將穩定電路作為自身的一部分存在,再與外界接觸。在外界看來,加上穩定電路的晶體管,是一個「全新的」晶體管。它做出一定的「犧牲」,獲得了穩定性。穩定電路的機制能夠保證晶體管順利而穩定的運轉。
1-3、輸入輸出匹配電路
匹配電路的目的是在選擇一種接受的方式。對於那些想提供更大增益的晶體管來說,其途徑是全盤的接受和輸出。這意味著通過匹配電路這一個介面,不同的晶體管之間溝通更加順暢,對於不同種的放大器類型來說,匹配電路並不是只有「全盤接受」一種設計方法。一些直流小、根基淺的小型管,更願意在接受的時候做一定的阻擋,來獲取更好的雜訊性能,然而不能阻擋過了頭,否則會影響其貢獻。而對於一些巨型功率管,則需要在輸出時謹小慎微,因為他們更不穩定,同時,一定的保留有助於他們發揮出更多的「不扭曲的」能量。
典型的阻抗匹配網路有L匹配、π形匹配和T形匹配。其中L匹配,其特點就是結構簡單且只有兩個自由度L和C。一旦確定了阻抗變換比率和諧振頻率,網路的Q值(帶寬)也就確定了。π形匹配網路的一個優點就是不管什麼樣的寄生電容,只要連接到它,都可以被吸到網路中,這也導致了π形匹配網路的普遍應用,因為在很多的實際情況中,占支配地位的寄生元件是電容。T形匹配,當電源端和負載端的寄生參數主要呈電感性質時,可用T形匹配來把這些寄生參數吸收入網路。
確保射頻PA穩定的實現方式
每一個晶體管都是潛在不穩定的。好的穩定電路能夠和晶體管融合在一起,形成一種「可持續工作」的模式。穩定電路的實現方式可劃分為兩種:窄帶的和寬頻的。
窄帶的穩定電路是進行一定的增益消耗。這種穩定電路是通過增加一定的消耗電路和選擇性電路實現的。這種電路使得晶體管只能在很小的一個頻率范圍內貢獻。另外一種寬頻的穩定是引入負反饋。這種電路可以在一個很寬的范圍內工作。
不穩定的根源是正反饋,窄帶穩定思路是遏制一部分正反饋,當然,這也同時抑制了貢獻。而負反饋做得好,還有產生很多額外的令人欣喜的優點。比如,負反饋可能會使晶體管免於匹配,既不需要匹配就可以與外界很好的接洽了。另外,負反饋的引入會提升晶體管的線性性能。
射頻PA的效率提升技術
晶體管的效率都有一個理論上的極限。這個極限隨偏置點(靜態工作點)的選擇不同而不同。另外,外圍電路設計得不好,也會大大降低其效率。目前工程師們對於效率提升的辦法不多。這里僅講兩種:包絡跟蹤技術與Doherty技術。
包絡跟蹤技術的實質是:將輸入分離為兩種:相位和包絡,再由不同的放大電路來分別放大。這樣,兩個放大器之間可以專注的負責其各自的部分,二者配合可以達到更高的效率利用的目標。
Doherty技術的實質是:採用兩只同類的晶體管,在小輸入時僅一個工作,且工作在高效狀態。如果輸入增大,則兩個晶體管同時工作。這種方法實現的基礎是二隻晶體管要配合默契。一種晶體管的工作狀態會直接的決定了另一支的工作效率。
射頻PA面臨的測試挑戰
功率放大器是無線通信系統中非常重要的組件,但他們本身是非線性的,因而會導致頻譜增生現象而干擾到鄰近通道,而且可能違反法令強制規定的帶外(out-of-band)放射標准。這個特性甚至會造成帶內失真,使得通信系統的誤碼率(BER)增加、數據傳輸速率降低。
在峰值平均功率比(PAPR)下,新的OFDM傳輸格式會有更多偶發的峰值功率,使得PA不易被分割。這將降低頻譜屏蔽相符性,並擴大整個波形的EVM及增加BER。為了解決這個問題,設計工程師通常會刻意降低PA的操作功率。很可惜的,這是非常沒有效率的方法,因為PA降低10%的操作功率,會損失掉90%的DC功率。
現今大部分的RF PA皆支持多種模式、頻率范圍及調制模式,使得測試項目變得更多。數以千計的測試項目已不稀奇。波峰因子消減(CFR)、數字預失真(DPD)及包絡跟蹤(ET)等新技術的運用,有助於將PA效能及功率效率優化,但這些技術只會使得測試更加復雜,而且大幅延長設計及測試時間。增加RF PA的帶寬,將導致DPD測量所需的帶寬增加5倍(可能超過1 GHz),造成測試復雜性進一步升高。
依趨勢來看,為了增加效率,RF PA組件及前端模塊(FEM)將更緊密整合,而單一FEM則將支持更廣泛的頻段及調制模式。將包絡跟蹤電源供應器或調制器整合入FEM,可有效地減少移動設備內部的整體空間需求。為了支持更大的操作頻率范圍而大量增加濾波器/雙工器插槽,會使得移動設備的復雜度和測試項目的數量節節攀升。
2. 江鈴順達柴油電噴車故障碼dpd壓差感測器電壓低dtd是什麼意思
1、節氣門位置感測器
作用:節氣門位置感測器是監測節氣門開啟角度的大小,確定怠速,全負荷及加減速工況,以實施與節氣門開度狀態
相對應的各種噴油量控制。失效影響:怠速忽高忽低,或造成飛車現象。
2、進氣門壓力感測器
作用:進氣壓力感測器是提供發動機負荷信息,即通
遇對進氣管的壓力測量,間接測量進入發動機的進氣量,再通過內部電路使進氣量轉化成電信號提供給電腦。失效影響:造成發動機不易起動,或怠速不穩。
3、進氣溫度感測器
作用:提供空氣溫度信息用於修正噴油量和點火正時。 失效影響:怠速偏低,易熄火。
4、曲軸轉角感測器
作用:是提供轉速和曲軸相位信息,為噴油正時和點火正時提供參照點。失效影響:發動機不能起動或起動後發動機突然熄火。
5、冷卻液溫度感測器
作用:是監測發動機冷卻液溫度,將之轉換為電壓信號傳送到電腦,ECU根據此信號來控制噴油量,點火正時和怠速控制。 失效影響:怠速偏低。
6、氧感測器
作用:是提供混合器濃度信息,用於修正噴油量,實現對空燃比的閉環控制,保證發動機實際的空燃比接近理論空燃比的主要元件。 失效影響:怠速不穩,耗量過大。
7、爆震感測器
作用:是提供爆震信息,用於修正點火正時,實引爆震閉環控制。 失效影響:當爆震將要發生前無法提供爆震信點,電腦接收不到信號「峰值」不能減少點火提前角,而發生爆震。 8、三元催化器
作用:三元催化器裝在排氣管中的消聲器前,可同時降低尾氣中三種污染物(一氧化碳CO、未燃碳氧化合物HC和氧化物Nox的含量,發動機的空燃比接近理論空燃比時,三元催化器轉化效率最高,當有害氣體的300℃~800℃的高溫通過三元催化器中心經附在陶瓷單體上的貴重催化發生氧化和還原反應,轉化為無害氣體。 失效影響:排出的廢氣不能達標。
3. 數字鎖相環(DPLL)的簡介
隨著數字電路技術的發展,數字鎖相環在調制解調、頻率合成、FM 立體聲解碼、彩色副載波同步、圖象處理等各個方面得到了廣泛的應用。數字鎖相環不僅吸收了數字電路可靠性高、體積小、價格低等優點,還解決了模擬鎖相環的直流零點漂移、器件飽和及易受電源和環境溫度變化等缺點,此外還具有對離散樣值的實時處理能力,已成為鎖相技術發展的方向。
鎖相環是一個相位反饋控制系統,在數字鎖相環中,由於誤差控制信號是離散的數字信號,而不是模擬電壓,因而受控的輸出電壓的改變是離散的而不是連續的;此外,環路組成部件也全用數字電路實現,故而這種鎖相環就稱之為全數字鎖相環(簡稱DPLL)。
數字鎖相環主要由相位參考提取電路、晶體振盪器、分頻器、相位比較器、脈沖補抹門等組成。分頻器輸出的信號頻率與所需頻率十分接近,把它和從信號中提取的相位參考信號同時送入相位比較器,比較結果示出本地頻率高了時就通過補抹門抹掉一個輸入分頻器的脈沖,相當於本地振盪頻率降低;相反,若示出本地頻率低了時就在分頻器輸入端的兩個輸入脈沖間插入一個脈沖,相當於本地振盪頻率上升,從而達到同步。
數字鎖相環的結構 數字鎖相環的一般由數字鑒相器(DPD, Digital Phase Detector)、數字環路濾波器(DLF,Digital Loop Filter)、數字壓控振盪器(DCO,Digital Control Oscillator)三部分組成。
(1)數字環路鑒相器(DPD)
數字鑒相器也稱采樣鑒相器,是用來比較輸入信號與壓控振盪器輸出信號的相位,它的輸出電壓是 對應於這兩個信號相位差的函數。它是鎖相環路中的關鍵部件,數字鑒相器的形式可分為:過零采樣鑒相器、觸發器型數字鑒相器、超前—滯後型數字鑒相器和奈奎斯特速率取樣鑒相器。
(2)數字環路濾波器(DLF)
數字環路濾波器在環路中對輸入雜訊起抑止作用,並且對環路的校正速度起調節作用。數字濾波器是一種專門的技術,有各種各樣的結構形式和設計方法。引入數字環路濾波器和模擬鎖相環路引入環路濾波器的目的一樣,是作為校正網路引入環路的。因此,合理的設計數字環路濾波器和選取合適的數字濾波器結構就能使DPLL滿足預定的系統性能要求。
(3) 數字壓控振盪器(DCO)
數控振盪器,又稱為數字鍾。它在數字環路中所處的地位相當於模擬鎖相環中的壓控振盪器(VCO)。但是,它的輸出是一個脈沖序列,而該輸出脈沖序列的周期受數字環路濾波器送來的校正信號的控制。其控制特點是:前一采樣時刻得到的校正信號將改變下一個采樣時刻的脈沖時間位置。
4. 圖所示電路中,各燈額定電壓和額定功率分別是:A燈「10V 10W」,B燈「60V 60W」,C燈「40V 40W」,D燈
A燈的電阻:RA=
|