Ⅰ 如何自學掌握射頻電路設計的能力
本書以MATLAB2012a版本中的RF(射頻)工具箱2.9為基礎,以眾多的例子說明RF工具箱中的RF對象模型專、對象操作方法和函數在RF電路設屬計中的應用。全書共10章,第1章簡要介紹MATLAB的基礎和RF工具箱,並給出說明工作流程的完整示例。第2章介紹RF工具箱中RF數據的計算、存儲、提取、可視化和輸出方法。其後各章以RF工具箱的RF電路對象模型為主線,將函數和對象操作方法融入其中,以例子說明它們在RF電路元件集成、參數計算和模擬方面的應用,主要內容有二埠網路、傳輸線、射頻濾波器、Smith圓圖、匹配網路、射頻放大器設計、混頻器、射頻分析的圖形用戶界面等。內容簡介藉助模擬軟體及大量例題學習RF理論技術,使讀者理解透徹;針對MATLAB的RF工具箱2.9,功能強大,應用便利,滿足實戰要求。作者簡介陳其昌,畢業至今,一直在廣電總局761台從事設備調試及技術保障工作。著作方向:RF技術,MATLAB。主要著作出版情況:單位培訓講義《MATLAB在RF電路中的應用》。
Ⅱ 零基礎學習射頻電路是否可行
學習方法有很多種因人而異,但是大致都是相同的
1、要持之以恆、堅持不接做一個事情,例如:看書,每天看一部分,然後第二天復習並且再看一部分,重點在於堅持。
2、循序漸進,有時候我們太想急於求成,反而適得其反,每天進步一點,這樣逐步積累,人不容易厭倦,
3、興趣的培養,很多覺得學習就是學習,忽略興趣愛好對學習的幫助,有很多例子,成績一直不好,怎麼學,怎麼補課都沒有用,最好有個興趣愛好,因為愛好開始研究相關知識,慢慢發現自己的問題酒後就繼續上。
4、最後當然就是學會總結和復習,溫故而知新。
Ⅲ 什麼是射頻電路
射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於1000次的稱為高頻電流,而射頻就是這樣一種高頻電流。有線電視系統就是採用射頻傳輸方式的
在電子學理論中,電流流過導體,導體周圍會形成磁場;交變電流通過導體,導體周圍會形成交變的電磁場,稱為電磁波。
在電磁波頻率低於100khz時,電磁波會被地表吸收,不能形成有效的傳輸,但電磁波頻率高於100khz時,電磁波可以在空氣中傳播,並經大氣層外緣的電離層反射,形成遠距離傳輸能力,我們把具有遠距離傳輸能力的高頻電磁波稱為射頻,英文縮寫:RF
組成編輯
高頻電路基本上是由無源元件、有源器件和無源網路組成的。高頻電路中使用的元器件與低頻電路中使用的元器件頻率特性是不同的。高頻電路中無源線性元件主要是電阻(器)、電容(器)和電感(器)。
在電子技術領域,射頻電路的特性不同於普通的低頻電路。主要原因是在高頻條件下,電路的特性與低頻條件下不同,因此需要利用射頻電路理論去理解射頻電路的工作原理。在高頻條件下,雜散電容和雜散電感對電路的影響很大。雜散電感存在於導線連接以及組件本身存在的內部自感。雜散電容存在於電路的導體之間以及組件和地之間。在低頻電路中,這些雜散參數對電路的性能影響很小,隨著頻率的增加,雜散參數的影響越來越大。在早期的VHF頻段電視接收機中的高頻頭,以及通信接收機的前端電路中,雜散電容的影響都非常大以至於不再需要另外添加電容。
此外,在射頻條件下電路存在趨膚效應。與直流不同的是,在直流條件下電流在整個導體中流動,而在高頻條件下電流在導體表面流動。其結果是,高頻的交流電阻要大於直流電阻。
在高頻電路中的另一個問題是電磁輻射效應。隨著頻率的增加,當波長可與電路尺寸12比擬時,電路會變為一個輻射體。這時,在電路之間、電路和 外部環境之間會產生各種耦合效應,因而引出許多干擾問題。這些問題在低頻條件下往往是無關緊要的。
Ⅳ 快速掌握天線,射頻電路這一塊兒需要先學哪些基礎課程
電磁場和電路知識是基礎,理解了靜電場,就可以學電磁場了。然後學射頻和微波技術,重點掌握傳輸線理論和阻抗匹配,還有波導。你會發現很多地方要用到電磁場和微積分。這時天線就很好理解了,比如dipole天線就是傳輸線開路,只是波長有要求。進階要學天線理論,比如對偶理論,相控陣,口徑天線。
Ⅳ 想學無線電 看了「電子科技大學的」楊玉梅 射頻電路,看不太懂,有沒有比這個更簡單基礎的視頻 或書籍
不知道你的基礎是什麼。如果是高中基礎,可以先學三極體放大電路和基本數字電路。
Ⅵ 射頻電路基礎的目錄
1.1 射頻電路的應用
1.1.1 無線電遠程通信
1.1.2 雷達
利用電磁波探測目標的電子設備。發射電磁波對目標進行照射並接收其回波,由此獲得目標至電磁波發射點的距離、距離變化率(徑向速度)、方位、高度等信息。
雷達概念形成於20世紀初。雷達是英文radar的音譯,為Radio Detection And Ranging的縮寫,意為無線電檢測和測距的電子設備。
各種雷達的具體用途和結構不盡相同,但基本形式是一致的,包括:發射機、發射天線、接收機、接收天線,處理部分以及顯示器。還有電源設備、數據錄取設備、抗干擾設備等輔助設備。
雷達所起的作用和眼睛和耳朵相似,當然,它不再是大自然的傑作,同時,它的信息載體是無線電波。 事實上,不論是可見光或是無線電波,在本質上是同一種東西,都是電磁波,在真空中傳播的速度都是光速C,差別在於它們各自的頻率和波長不同。其原理是雷達設備的發射機通過天線把電磁波能量射向空間某一方向,處在此方向上的物體反射碰到的電磁波;雷達天線接收此反射波,送至接收設備進行處理,提取有關該物體的某些信息(目標物體至雷達的距離,距離變化率或徑向速度、方位、高度等)。
測量距離實際是測量發射脈沖與回波脈沖之間的時間差,因電磁波以光速傳播,據此就能換算成目標的精確距離。
測量目標方位是利用天線的尖銳方位波束測量。測量仰角靠窄的仰角波束測量。根據仰角和距離就能計算出目標高度。
測量速度是雷達根據自身和目標之間有相對運動產生的頻率多普勒效應原理。雷達接收到的目標回波頻率與雷達發射頻率不同,兩者的差值稱為多普勒頻率。從多普勒頻率中可提取的主要信息之一是雷達與目標之間的距離變化率。當目標與干擾雜波同時存在於雷達的同一空間分辨單元內時,雷達利用它們之間多普勒頻率的不同能從干擾雜波中檢測和跟蹤目標。雷達的種類繁多,分類的方法也非常復雜。通常可以按照雷達的用途分類,如預警雷達、搜索警戒雷達、引導指揮雷達、炮瞄雷達、測高雷達、戰場監視雷達、機載雷達、無線電測高雷達、雷達引信、氣象雷達、航行管制雷達、導航雷達以及防撞和敵我識別雷達等。
按照雷達信號形式分類,有脈沖雷達、連續波雷達、脈部壓縮雷達和頻率捷變雷達等。
按照角跟蹤方式分類,有單脈沖雷達、圓錐掃描雷達和隱蔽圓錐掃描雷達等。
按照目標測量的參數分類,有測高雷達、二坐標雷達、三坐標雷達和敵
我識對雷達、多站雷達等。
按照雷達採用的技術和信號處理的方式有相參積累和非相參積累、動目標顯示、動目標檢測、脈沖多普勒雷達、合成孔徑雷達、邊掃描邊跟蹤雷達。
按照天線掃描方式分類,分為機械掃描雷達、相控陣雷達等。
按雷達頻段分,可分為超視距雷達、微波雷達、毫米波雷達以及激光雷達等。
1.1.3 藍牙
藍牙,是一種支持設備短距離通信(一般10m內)的無線電技術。能在包括行動電話、PDA、無線耳機、筆記本電腦、相關外設等眾多設備之間進行無線信息交換。利用「藍牙」技術,能夠有效地簡化移動通信終端設備之間的通信,也能夠成功地簡化設備與網際網路Internet之間的通信,從而數據傳輸變得更加迅速高效,為無線通信拓寬道路。藍牙採用分散式網路結構以及快跳頻和短包技術,支持點對點及點對多點通信,工作在全球通用的2.4GHz ISM(即工業、科學、醫學)頻段。其數據速率為1Mbps。採用時分雙工傳輸方案實現全雙工傳輸。
藍牙,對於手機乃至整個IT業而言已經不僅僅是一項簡單的技術,而是一種概念。當藍牙聯盟信誓旦旦地對未來前景作著美好的憧憬時,整個業界都為之震動。拋開傳統連線的束縛,徹底地享受無拘無束的樂趣,藍牙給予我們的承諾足以讓人精神振奮。
藍牙技術是一種無線數據與語音通信的開放性全球規范,它以低成本的近距離無線連接為基礎,為固定與移動設備通信環境建立一個特別連接。其程序寫在一個9 x 9 mm的微晶元中。
例如,如果把藍牙技術引入到行動電話和膝上型電腦中,就可以去掉行動電話與膝上型電腦之間的令人討厭的連接電纜而通過無線使其建立通信。列印機、PDA、桌上型電腦、傳真機、鍵盤、游戲操縱桿以及所有其它的數字設備都可以成為藍牙系統的一部分。除此之外,藍牙無線技術還為已存在的數字網路和外設提供通用介面以組建一個遠離固定網路的個人特別連接設備群。
藍牙工作在全球通用的2.4GHzISM(即工業、科學、醫學)頻段。藍牙的數據速率為1Mb/s。時分雙工傳輸方案被用來實現全雙工傳輸。 使用IEEE802.15協議。
ISM頻帶是對所有無線電系統都開放的頻帶,因此使用其中的某個頻段都會遇到不可預測的干擾源。例如某些家電、無繩電話、汽車開門器、微波爐等等,都可能是干擾。為此,藍牙特別設計了快速確認和跳頻方案以確保鏈路穩定。跳頻技術是把頻帶分成若干個跳頻信道(hop channel),在一次連接中,無線電收發器按一定的碼序列(即一定的規律,技術上叫做「偽隨機碼」,就是假的隨機碼)不斷地從一個信道跳到另一個信道,只有收發雙方是按這個規律進行通信的,而其他的干擾不可能按同樣的規律進行干擾;跳頻的瞬時帶寬是很窄的,但通過擴展頻譜技術使這個窄帶寬成百倍地擴展成寬頻帶,使干擾可能的影響變成很小。
與其它工作在相同頻段的系統相比,藍牙跳頻更快,數據包更短,這使藍牙比其它系統都更穩定。FEC(Forward Error Correction,前向糾錯)的使用抑制了長距離鏈路的隨機噪音。應用了二進制調頻(FM)技術的跳頻收發器被用來抑制干擾和防止衰落。
藍牙基帶協議是電路交換與分組交換的結合。在被保留的時隙中可以傳輸同步數據包,每個數據包以不同的頻率發送。一個數據包名義上佔用一個時隙,但實際上可以被擴展到佔用5個時隙。藍牙可以支持非同步數據信道、多達3個的同時進行的同步話音信道,還可以用一個信道同時傳送非同步數據和同步話音。每個話音信道支持64kb/s同步話音鏈路。非同步信道可以支持一端最大速率為721kb/s而另一端速率為57.6kb/s的不對稱連接,也可以支持433.9kb/s的對稱連接。
1.1.4 射頻識別
1.2 射頻電路的非線性特點
1.3 本書的主要內容、組織結構和學習要求
本章小結
思考題和習題 2.1 諧振功率放大器基本工作原理
2.1.1 諧振功率放大器的電路組成
2.1.2 諧振功率放大器的工作原理
2.1.3 高頻諧振功率放大器中的能量關系
2.2 丙類諧振功率放大器的工作狀態分析
2.2.1 解析分析法
2.2.2 動態特性曲線——圖解分析法
2.2.3 諧振功率放大器的工作狀態
2.2.4 負載特性
2.2.5 UCC、UBB、UBM對諧振功率放大器性能的影響
2.3 諧振功率放大器的高頻特性
2.4 諧振功率放大器電路
2.4.1 直流饋電線路
2.4.2 輸出匹配網路
2.5 高效率高頻功率放大器及功率合成技術
2.5.1 高效率高頻功率放大器
2.5.2 功率合成技術
2.6 集成器件與應用電路舉例
本章小結
思考題和習題 3.1 反饋式振盪的基本原理
3.1.1 平衡條件
3.1.2 穩定條件
3.1.3 起振條件
3.2 LC正弦波振盪器
3.2.1 LC正弦波振盪器電路的構成原則
3.2.2 三端式振盪器電路分析
3.2.3 其他LC振盪器電路
3.3 RC振盪器
3.3.1 RC移相振盪器
3.3.2 RC選頻振盪器
3.4 振盪器的頻率穩定度
3.4.1 振盪器頻率的技術參量
3.4.2 頻率穩定度的表示方法
3.4.3 振盪器頻率穩定原理和穩頻方法
3.5 石英晶體振盪器
3.5.1 石英諧振器的物理特性和電特性
3.5.2 石英晶體振盪器電路
3.6 負阻型LC正弦波振盪器
3.7 振盪器中的寄生振盪和間歇振盪
3.8 集成器件與應用電路舉例
3.9 Pspice模擬舉例
本章小結
思考題和習題 4.1 雜訊來源和特性
4.1.1 雜訊來源
4.1.2 雜訊特性
4.2 電路中元器件的雜訊
4.2.1 電阻的熱雜訊及等效電路
4.2.2 晶體管的雜訊
4.2.3 場效應管的雜訊
4.3 功率信噪比和雜訊系數
4.3.1 功率信噪比
4.3.2 雜訊系數
4.4 射頻小信號放大器
4.4.1 射頻小信號放大器的分類與組成
4.4.2 射頻小信號放大器的主要技術指標
4.5 射頻小信號調諧放大器
4.5.1 單級單調諧放大器
4.5.2 調諧放大器的級聯
4.6 S參數與放大器設計
4.6.1 S參數的定義
4.6.2 S參數的測量
4.6.3 放大器的S參數
4.6.4 用S參數設計放大器
4.7 寬頻帶小信號放大器
4.7.1 寬頻帶放大器的特點
4.7.2 寬頻帶放大器的設計要點
4.8 低雜訊放大器
4.8.1 低雜訊放大器的定義及特點
4.8.2 低雜訊放大器的設計要點
4.9 集成器件與應用電路舉例
4.9.1 AT-32032晶體管放大器
4.9.2 NJG1106KB2低雜訊放大器
4.9.3 AD8353寬頻放大器
本章小結
思考題和習題 5.1 調制的分類
5.2 調幅信號
5.2.1 普通調幅信號
5.2.2 雙邊帶調幅信號
5.2.3 單邊帶調幅信號
5.2.4 殘留邊帶調幅信號
5.3 振幅調制原理
5.3.1 非線性器件調幅
5.3.2 線性時變電路調幅
5.3.3 集電極調幅
5.3.4 基極調幅
5.4 振幅解調原理
5.4.1 包絡檢波
5.4.2 同步檢波
5.5 集成器件與應用電路舉例
5.5.1 MCl596調幅電路
5.5.2 MCl595調幅電路
5.5.3 二極體環形調制器
5.5.4 二極體峰值包絡檢波器
5.5.5 MCl596乘積型同步檢波器
5.5.6 二極體乘積型同步檢波器
5.6 :PSpice模擬舉例
本章小結
思考題和習題 6.}混頻信號
6.2 混頻原理
6.2.1 晶體管放大器混頻
6.2.2 場效應管放大器混頻
6.2.3 雙柵MOSFET放大器混頻
6.2.4 差分對放大器混頻
6.2.5 二極體混頻
6.2.6 電阻型場效應管混頻
6.3 混頻器的主要性能指標
6.4 接收機混頻電路的干擾和失真
6.4.1 高頻已調波與本振信號的組合頻率干擾
6.4.2 干擾信號與本振信號的寄生通道干擾
6.4.3 干擾信號與高頻已調波的交叉調制干擾
6.4.4 干擾信號之間的互調干擾
6.4.5 包絡失真
6.4.6 強信號阻塞
6.5 集成器件與應用電路舉例
6.5.1 AD8343混頻器
6.5.2 MAX9996混頻器
6.5.3 中波調幅收音機變頻器
6.5.4 SRA-1混頻器
本章小結
思考題和習題 7.1 調頻信號和調相信號
7.1.1 時域表達式和參數
7.1.2 頻譜和功率分布
7.2 角度調制原理
7.2.1 直接調頻
7.2.2 間接調頻
7.2.3 線性頻偏擴展
7.3 角度解調原理
7.3.1 鑒頻的性能指標
7.3.2 斜率鑒頻
7.3.3 相位鑒頻
7.3.4 脈沖計數鑒頻
7.3.5 限幅鑒頻
7.4 集成器件與應用電路舉例
7.4.1 MC2833調頻電路
7.4.2 雙LC並聯諧振迴路斜率鑒頻器
7.4.3 差分峰值斜率鑒頻器
7.4.4 MC3335鑒頻電路
7.5 PSpice模擬舉例
本章小結
思考題和習題 8.1 ASK調制與解調原理
8.1.1 二進制ASK調制與解調
8.1.2 多進制ASK調制與解調
8.2 FSK調制與解調原理
8.2.1 二進制FSK調制與解調
……
第九章 反饋與控制
第十章 數字頻率合成
參考文獻
Ⅶ 射頻電路入門學習思路
射頻電路要快速入門,不可能的。這東西對經驗要求十分得高,除非你能找到一個很好的老專師或者屬師傅,他願意傾心相授。不過你也可以做一些工作。
1、復習一下高等數學,既然有研一基礎,恐怕數學上應該有一些積累。主要是一些積分變換(傅立葉、拉普拉斯、Z),常微偏微方程這些東西,在微波和電磁波領域,最基礎的就是麥克斯韋方程,經常跟它打交道,你的數學基礎好,會省力很多,也容易做論文什麼。
2、有空的話,溫習一下電路基礎裡面的分布參數電路,模電中的基本放大電路,高頻電子線路。另外,你得補一下微波方面的課程,我記得我本科的時候,微波有三門課,應用電磁學(應該是對應你的微波原理),微波與光導波技術,射頻電子技術(屬於高頻加強版,但不是高頻,高頻是另外單獨的課程)。也可以再看看《高速數學設計》這本書,可能有用。
射頻電路這個領域難度很大,進步比較慢,不過做的人很少,找工作容易。
Ⅷ 求射頻電路基礎PDF,趙建勛老師的
審核滿意後請及時採納。
Ⅸ 如何學習射頻電路
射頻電路要快速入門,不可能的。這東西對經驗要求十分得高,除非你能找到一個很好的專老師或者師傅,他屬願意傾心相授。不過你也可以做一些工作。
1、復習一下高等數學,既然有研一基礎,恐怕數學上應該有一些積累。主要是一些積分變換(傅立葉、拉普拉斯、Z),常微偏微方程這些東西,在微波和電磁波領域,最基礎的就是麥克斯韋方程,經常跟它打交道,你的數學基礎好,會省力很多,也容易做論文什麼。
2、有空的話,溫習一下電路基礎裡面的分布參數電路,模電中的基本放大電路,高頻電子線路。另外,你得補一下微波方面的課程,我記得我本科的時候,微波有三門課,應用電磁學(應該是對應你的微波原理),微波與光導波技術,射頻電子技術(屬於高頻加強版,但不是高頻,高頻是另外單獨的課程)。也可以再看看《高速數學設計》這本書,可能有用。
射頻電路這個領域難度很大,進步比較慢,不過做的人很少,找工作容易。