① 反激電路工作原理
反擊電路工作原理,以單端反激電路原理為例,原理是反激開關電源採用了穩定性很好的雙環路反饋(輸出直流電壓隔離取樣反饋外迴路和初級線圈充磁峰值電流取樣反饋內迴路)控制系統,就可以通過開關電源的PWM(脈沖寬度調制器)迅速調整脈沖占空比,從而在每一個周期內對前一個周期的輸出電壓和初級線圈充磁峰值電流進行有效調節,達到穩定輸出電壓的目的。
單端反激式開關電源以主開關管的周期性導通和關斷為主要特徵。開關管導通時,變壓器一次側線圈內不斷儲存能量;而開關管關斷時,變壓器將一次側線圈內儲存的電感能量通過整流二極體給負載供電,直到下一個脈沖到來,開始新的周期。
開關電源中的脈沖變壓器起著非常重要的作用:一是通過它實現電場—磁場—電場能量的轉換,為負載提供穩定的直流電壓;二是可以實現變壓器功能,通過脈沖變壓器的初級繞組和多個次級繞組可以輸出多路不同的直流電壓值,為不同的電路單元提供直流電量;三是可以實現傳統電源變壓器的電隔離作用,將熱地與冷地隔離,避免觸電事故,保證用戶端的安全。
反激電源在空載或者輕載時有可能工作在斷續模式。空載或輕載時,開關的占空比較小,開關關斷後副邊電流線性減小,在開關開通之前減小到0,這時原、副邊電流均為0,反激電源工作在斷續工作模式。
② 為什麼正激式開關電源電路只能降壓,而反激式既可降壓又可升壓
正激電路:開關管導通時輸入源直接對輸出做功,電壓源輸出,輸出電壓是開關電壓的平均值。反激電路:輸入源在開關管導通時對儲能元件(l或c或二者組合)做功,儲能元件儲能,開關管截止時儲能元件向輸出端釋放能量,表現為輸入源間接向輸出端做功。
由不同的基本拓撲演變而來.
1,flyback由buck_boost演變而來,forward由buck演變而來.
2,flyback的變壓器本質上是耦合電感,在mos開通時儲存能量,mos關斷時釋放能量.一般情況下要開氣隙,但不是絕對的.forward的變壓器就是變壓器,只在mos開通時傳遞能量,基本不儲能量.
3,flyback在輸出整流二極體和濾波電容之間不能加電感,否則相當於電流源和電流源串聯.forward則必須加電感,否則相當於電壓源和電壓源並聯.
除了電路方面的區別外,還有控制方面的不同.
對於ccm的flyback(buck-boostderivedtopology)而言,其主電路控制-輸出傳遞函數中有一個右半平面的零點,這會給調節器設計帶來麻煩,
對於dcmflyback而言,就沒有沒有這個問題,而且電路退化成一階系統.
對於ccmflyforward(buckderivedtopology)而言,沒有右半平面的零點.
這種問題最好去21世紀電源網論壇去看看,不是做廣告,主流論壇,提點建議而已。
③ 為什麼在做電源的時候應用反激電路比正激電路多呢
這該問題要從它的電路特點來比較:
反激式:適用於200W以下的小功版率供電,而小功率電權子產品,在日常應用較為普及。開關管截止時,向次級輸送能量,電路簡單、元件數量較少、成本相對較低、輸出電路中雖然用到濾波電感,但要求卻不高(一般採用定值取值,而不必進行計算)。
正激式:開關管導通時傳輸能量,適合於200W以上的供電電路。它的高頻變壓器傳輸效率高於反激式,可使變壓器體積更小、輸出紋波較反激式小,但要計算濾波電感的參數,正激式的缺點:開關損耗大於反激式、雜訊大於反激式、元件數目比反激式多。200W以上的電子產品在日常使用較少,反激式適用於200W以下的小功率供電,而小功率電子產品,在日常應用較為普及,這也就是反激式用量多餘正激式的原因。
④ 反激式電路,原邊斷開後作為儲能元件向副邊傳遞能量,副邊怎麼會在異名端產生高電勢讓副邊的二極體導通
出門左轉物理吧——來自 諾基亞 Lumia 800
⑤ 反激式開關電源為什麼不需要磁復位
不是不需要,只是當MOS管關斷,次級電壓翻轉@B會向負的方向改變。
⑥ 開關電源反激式控制電路的工作原理,要詳細點的。
首先要知道反激拓撲是什麼,了解反激拓撲後:
1
當開關管導通時候,變壓器的初級線圈是用來儲能的。
2
當開關管截止時候,由電感的原理可知,初級線圈靠近電源的一端產生反極性電壓,傳給二次側。
開關管導通時,二次側無輸出。開關管截止時,二次側有輸出。
⑦ 開關電源的正激和反激的磁復位
RCD電路都是為了解決MOS管在截至期間的由於電感存在而產生的反肩峰值,這樣的反肩峰電壓不被吸收,就會影響到MOS的反向耐壓的問題,副邊繞組的紋波等。希望認真了解RCD的作用,就可以舉一反三的理解以上電路的工作原理。
⑧ 求為什麼正激有磁心復位電路,而反激卻沒有
反激給負載送電的過程就是磁芯復位過程,不需要另外的復位。而正激負載電能是開關管導通時直接輸送的,磁芯能量沒有釋放途徑,必須設計專門的復位電路。
⑨ 反激式開關電源的原理
在開關管T關斷期間變壓器向輸出電容器和負載提供能量,為反激變換器。
基本原理:
當開關晶體管Tr ton時,變壓器初級Np有電流 Ip,並將能量儲存於其中(E = LpIp / 2).由於Np與Ns極性相反,此時二極體D反向偏壓而截止,無能量傳送到負載.當開關Tr off 時,由楞次定律: (e = -N△Φ/△T)可知,變壓器原邊繞組將產生一反向電勢,此時二極體D正向導通,負載有電流IL流通.反激式轉換器之穩態波形
導通時間 ton的大小將決定Ip、Vce的幅值:
Vce max = VIN / 1-Dmax
VIN: 輸入直流電壓 ; Dmax : 最大工作周期
Dmax = ton / T
由此可知,想要得到低的集電極電壓,必須保持低的Dmax,也就是Dmax<0.5,在實際應用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN.
開關管Tr on時的集電極工作電流Ie,也就是原邊峰值電流Ip為: Ic = Ip = IL / n. 因IL = Io,故當Io一定時,匝比 n的大小即決定了Ic的大小,上式是按功率守恆原則,原副邊安匝數 相等 NpIp = NsIs而導出. Ip亦可用下列方法表示:
Ic = Ip = 2Po / (η*VIN*Dmax)η: 轉換器的效率
公式導出如下:
輸出功率 : Po = LIp2η / 2T
輸入電壓 : VIN = Ldi / dt設 di = Ip,且 1 / dt = f / Dmax,則:
VIN = LIpf / Dmax 或 Lp = VIN*Dmax / Ipf
則Po又可表示為 :
Po = ηVINf DmaxIp2 / 2f Ip = 1/2ηVINDmaxIp
∴Ip = 2Po / ηVINDmax
上列公式中 :
VIN :最小直流輸入電壓 (V)
Dmax :最大導通占空比
Lp : 變壓器初級電感 (mH)
Ip : 變壓器原邊峰值電流 (A)
f ::轉換頻率 (KHZ)