Ⅰ 数控稳压电源 0-30V 4A,网上很早公布的电路图,看着很专业,但是看不大明白,上边的插针分别表示什么意思
你的原理图我看了。有的地方有些小错误,不过能看懂。先重点讲下你说的J2接口。该接口接的是一只PNP型功率三极管。该三极管同Q4,Q5,U1共同构成稳压电源。U8,拦派猛U9将来自MCU的信号转换为基准电压给U1提供基准电压参考。U1通过该对比该电压调节输出电压。达到MCU控制输出电压的目的。U6同R24构成输出电流检测电路。当电路发生故障短路。U6便控制Q3关断输出。同时羡消通过总线告知MCU电路发生故障。MCU报警同时简桥通过U-H/L端控制Q1,Q2彻底关断电源。如果需要详细分析电源稳压原理。我再补充。
Ⅱ 请问你是不是有 数控电压源 设计的文本啊。 我很需要这个。如果看到这消息请回。谢谢了
数控直流稳压电源与传统的稳压电源相比,具有操作方便,电压稳定度高的特点,其输出电压大小采用数字显示,主要用于要求电源精度比较高的设备,或科研实验电源使用,并且此设计,没有用到单片机,只用到了数字技术中的可逆计数器,D/A 转换器,译码显示等电路,具有控制精度高,制作比较容易等优点。
2 单元电路设计
此数控直流稳压电源共有六部分,输出电压的调节是通过“+” ,“-”两键操作,步进电压精确到 0.1V控制可逆计数器分别作加,减计数,可逆计数器的二进制数字输出分两路运行:一路用于驱动数字显示电路,精确显示当前输出电压值;另一路进入数模转换电路(D/A转换电路) ,数模转换电路将数字量按比例,转换成模拟电压,然后经过射极跟随器控制,调整输出级,输出稳定直流电压。为了实现上述几部分的正常工作,需要另制15V,和5V 的直流稳压电源,及一组未经稳压的12V~17V的直流电压。此下所讲的数控电源主要就是对此组电压进行控制,使输出 0~9V的稳定的可调直流电压。
此原理方框图如下图 1 所示。
2.1 “+”, “-”键控制的可逆计数器的设计
此部分电路主要用两按钮开关作为电压调整键, 与可逆计数器的加计数CPU时钟输入端和减计数CPD时钟输入端相连,可逆计数器采用两片四位十进制同步加/减计数集成块 74LS192 级联而成。74LS192 是双时钟,可预置数,异步复位,十进制(BCD 码)可逆计数器。与之功能相同的还有其它芯片,比较容易找到。
2.1.1 工作原理
由于输出电压从 0V 到 9.9V 可以调节,所以 74LS192 两计数器总计数范围从 00000000 到10011001(即 0~99),而 74LS192 本身为十进制可逆计数器,所以只需两块这样的芯片级联就可以达到目的,此芯片封装和工作模式表如下图 2 所示。
PL是低电平有效的预置数允许端,PL=0 时,预置数输入端 P0~P3 上的数据被置入计数器。MR是高电平有效的复位端,MR=1 时,计数器被复位,所有输出端都为低电平。
CPU是加计数时钟,CPD 是减计数时钟,当 CPU=CPD=1 时,计数器处于保持状态,不计数。当 CPD=1,CPU 由0变为1时,计数器的计数值加1 ;当 CPU=1,CPD 由0变1时,计数器的计数值减1 。
TCU 是进位输出端,当加计数器达到最大计数值时,即达到 9 时,TCU 在后半个时钟周期(CPU=0)内变成低电平,其他情况均为高电平。TCU是借位输出端,当减计数器计到零时,TCD在时钟的后半个周期(CPD=0)内变成低电平,其他情况下均为高电平。
为实现 100 进制的计数可把第一块芯片的 TCU,TCD 分别接后一级的 CPU,CPD 就可以级联使用,这就达到了 0~99 的计数。
2.1.2 元件的选择
74LS192 是双时钟,可预置数,异步复位,十进制(BCD 码)可逆计数器,还可选用 54HC192,54HCT192,74HC192,74HCT192 等。
2.2 数字显示电路的设计
2.2.1 工作原理
数字显示驱动采用两块 74LS248 芯片,74LS248 为四线七段译码驱动器,内部输出带上拉电阻它把从计数器传送来的二~十进制码,驱动数码管显示数码。具体功能如下图 3 真值表所示。
74LS248,七段译码器,输出高电平有效,适合于共阴极接法的七段数码管使用 A3,A2,A1,A0,为 8421BCD 码输入,a,b,c,d,e,f,g 为七段数码输出,LT 为试灯输入信号,用来检查,数码管的好坏,IBR 为灭零输出信号,用来动态灭零,IB/QBR 为灭灯输出信号,该端既可以作输入也可以作输出,具体工作如上真值表所示。
2.2.2 原件选择
与 74LS248 功能相同的还有,74LS247,7CD4511 等。
2.3 D/A转换电路(数模转换器)的设计
2.3.1 DAC0832 工作原理介绍
数模转换电路,采用两块 DAC0832 集成块,它是一个 8 位数/模转换电路,这里只使用高 4 位数字量输入端。由于 DAC0832 不包含运算放大器,所以需要外接一个运算放大器相配,才构成完整的 D/A转换器,低位 DAC 输出模拟量经 9:1 分流器分流后与高位 DAC 输出模拟量相加后送入运放,具体实现,由 900Ω和 100Ω的电阻相并联分流实现,运放将其转换成与数字端输入的数值成正比的模拟输出电压,运放采用具有调零的低噪声高速优质运放 NE5534。具体封装图如下图 4 所示。
DAC0832 芯片主要功能引脚的名称和作用
如下:
d7~d0:8 位二进制数据输入端;
ILE:输入锁存允许,高电平有效;
CS:片选信号,低电平有效;
WR1,WR2:写选通信号,低电平有效;
XFER:转移控制信号,低电平有效;
Rf:内接反馈电阻,Rf=15KΩ;
IOUT1,IOUT2:输出端,其中 IOUT1 和运放
反相输入相连,IOUT2 和运
放同相输入端相连并接地端;
Vcc:电源电压,Vcc 的范围为+5V~+15V;
Vref:参考电压,范围在-10V~+10V;
GND:接地端。
当 ILE=1,CS=0,WR=0,输入数据 d7~d0 存入 8 位输入寄存器中,当 WR2=0,XFER=0 时,输入寄存器中所存内容进入 8 位 DAC 寄存器并进行 D/A转换。
当 DAC0832 外接运放 A构成 D/A转换电路时,电路输出量 V0 和输入 d7~d0 的关系式为
2.3.2 DAC0832 芯片的特点
DAC0832 最具特色是输入为双缓冲结构,数字信号在进入 D/A转换前,需经过两个独立控制的8 位锁存器传送。其优点是 D/A转换的同时,DAC 寄存器中保留现有的数据,而在输入寄存器中可送入新的数据。系统中多个 D/A转换器内容可用一公共的选通信号选通输出。
由于 DAC0832 输出级没有加集成运放,所以需外加 NE5534 相配适用。NE5534 封装如下图 5所示。
IN-为反相输入端,IN+为同相输入端;
OUT 为输出端;
Balance 为平衡输入端,主要作用是,使内部
电路的差动放大电路处于平衡状态;
COMp/Bal的作用为,通过调节外接电阻,以
达到改善放大器的性能和输出电压;
VCC-和 Vcc+为正负电源供;
2.4 调整输出的设计
调整输出级采用运放作射极跟随器,使调整管的输出电压精确地与 D/A转换器输出电压保持一致。调整管采用大功率达林顿管,确保电路的输出电流值达到设计要求。数控电源各部分工作所需的15V和5V电源由固定集成稳压器 7815、7915、和 7805 提供,调整管所需输入电压,经简单整流,滤波即可得到,但要求能提供 5A的电流。
输出电压的调整,主要是运用射极输出器发射极上所接的 4.7K电阻来完成的,此反馈电阻的主要作用是,把输出电压反馈到 NE5534 的输入级的反向输入端,当同相输入 IN+和反向输入端IN-有差别是,调整输出电压使之趋于稳定,从而达到调整输出电压的目的。
2.5 电路调试
调节步骤如下:
2.5.1 输入数字 00000000,短接 Re1、Re、Rf 调运放调零电位器 Rw,用数字万用表检测,使输出电压 V o=01mV。
2.5.2 输入数字 10011001,调整 Re1、Re2、Rf 使输出电压 V o 达到预定的满量程 9.9V。
2.5.3 主要技术指标
本文所设计数控直流电源的电压输出范围为 0~9.9V,步进电压值为 0.1V,输出纹波电压不大于10mv,输出电流为 5A。
2.6 改进措施
本电源输出电压大小尚受限制,在需要较高输出电压时,在不改变调节精度(即步进电压值)前提下,只要增加计数器的级联数和相应 D/A转换器的个数,扩大数显指示范围,配合选用高电压输出运放,就能轻易地满足要求。当需要正负对称输出电压时,只要另增一组电源,对 D/A转换器及调整输出电路稍作改动即可达到目的
Ⅲ cw7809构成开关稳压电源的电路图
数控直流稳压电源电路,使用控制按钮来选择输出电压
(1·5-15V步迸式变化)的高低,采用发光二极管来指示输出电压值,具有调节方便、显示直观等特点。
电路工作原理
该数控直流稳压电源电路由稳压电路和输出电压控制电路组成,如图5-24所示。
稳压电路由电源开关Sl、电源变压器T、整流桥堆UR、电容器Cl-C3、三端稳压集成电路lCl、lC3和电阻器RO-RlO等组成。
输出电压控制电路由控制按钮S2、复位按钮S3、电阻器Rll-R3l、晶体管Vl-VIO、发光二极管VLl-VLlO和十进制计数/分配器集成电路IC2等组成。限于篇幅,电路中Rl2-Rl9、R22-R29、VL2-VL9和V2-V9末画出。
接通Sl,交流220V电压经T降压、UR整流、Cl和C2滤波后,一路作为稳压输人电压加至ICl的3脚,经ICl稳压后输出;另一路经lC3稳压为
9V,作为IC2的工作电源。
IC2在通电复位后,其YO端
(3脚)输出高电平,使Vl导通,Rl经Vl的导通内阻接地,而接人稳压电路
(R2-RlO经Vl的导通内阻对地短路)使ICl稳压后的输出电压为
1.5V;同时VLl点亮,指示输出电压值为
1.5V。
按动一下S2,lC2的CP端
(14脚)输大一个高电平脉冲,IC2开始计数,其Yl端输出高电平,使V2导通,Rl和R2接人稳压电路
(R3-RlO经V2的导通内阻接地短路),lCl的输出电压升至
3V,VL2点亮;与此同时,lC2的YO端变为低电平,Vl截止,VLl熄灭。
连续按动S2,lC2的YO-Y9输出端将依次轮流输出高电平,ICl的输出电压以1·5V步迸升高,同时相应的发光二极管点亮,指示出输出电压值。当IC2的Yg端输出高电平时,VlO导通,Rl-RlO全部接入稳压电路,lCl的输出电压为
1.5V;同时VLlO点亮,指示输出电压为
l5V。
按动复位按钮S3后,IC2强制复位,其M端输出高电平,ICl的输出电压为
1·5V。
改变RO-RlO的阻值,可改变稳压输出电压的高低。
元器件选择
RO-RlO均选用1/2W精密金属膜电阻器;Rll-R31选用1/4W金属膜电阻器或碳膜电
Cl和C2均选用铝电解电容器,Cl的耐压值为35V,C2的耐压值为25V。
VLl-VLlO选用φ3mm或φ5mm的发光二极管。
UR选用2A、5OV的整流桥堆。
Vl-VlO均选用S805O或C8050、3DG8050型硅NPN晶体管。
ICl选用LM317型三端可调稳压集成电路;IC2选用CD4017或MCl4017型十进制计数/分配器集成电路;IC3选用LM7809或CW7809型三端稳压集成电路。
T选用lOW、二次电压为18V的电源变压器。
S1选用250V、触头电流容量为SA的电源开关;S2和S3均选用微型动合按钮。
Ⅳ 数控机床(西门子/发那科系统)的电路图的看图。。。
首先我不敢肯定你的是不是梯形图
但肯定不是传统的普通电路图
学梯形图必须有普通电路图的基础知识做基础
梯形图(LAD, LadderLogic Programming Language)是PLC使用得最多的图形编程语言,被称为PLC的第一编程语言。
基本概念
梯形图语言沿袭了继电器控制电路的形式,梯形图是在常用的继电器与接触器逻辑控制基础上简化了符号演变而来的,具有形象、直观、实用等特点,电气技术人员容易接受,是目前运用上最多的一种PLC的编程语言。
在PLC程序图中,左、右母线类似于继电器与接触器控制电源线,输出线圈类似于负载,输入触点类似于按钮。梯形图由若干阶级构成,自上而下排列,每个阶级起于左母线,经过触点与线圈,止于右母线。
继电器电路转换梯形图
将继电器电路转换为功能相同的PLC外部接线图和梯形图步骤如下:
1)了解和熟悉被控设备的工艺过程和机械的动作情况,根据继电器电路图分析和掌握控制系统的工作原理,这样才能做到在设计和调试控制系统时心中有数。
2)确定PLC的输入信号和输出负载,以及与它们对应的梯形图中的输入位和输出位的地址,画出PLC的外部接线图。
3)确定与继电器电路图的中间继电器、时间继电器对应的梯形图中的位存储器(M)和定时器(T)的地址。
4)根据上述关系画出梯形图。
Ⅳ 数控电路图中SP是什么意思
电路复图中SP代表‘接近开关’旧标准文制字符号为JK。
其原理是:利用振荡器原理,检测物体的有无、通过、部件流,行程终了,旋转、计数等; 整体式,由检测部分和控制部分组成,无运动部件;和被检测物体不直接接触,坚固,树脂全密封;响应快,与电子自动控制系统相一致的高操作速度。
应用范围:组装机械、机械手、机床、精加工机床、焊接设备、农用及化工、机械输送等。
接近检测物体的时候会产生一个电讯号,一般24V的
SEP 符号差错概率 (Symbol Error ,SEP)