导航:首页 > 电器电路 > 电路板电偶

电路板电偶

发布时间:2025-06-02 21:08:57

1. 热电阻温度传感器四线接法的原理是什么

在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。


(1)电路板电偶扩展阅读

热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。

国标热电阻的引线主要有三种方式

1、二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合

2、三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的。

3、四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。

热电阻采用三线制接法。采用三线制是为了消除连接导线电阻引起的测量误差。这是因为测量热电阻的电路一般是不平衡电桥。热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。

采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。

2. 常见电池种类有哪些

电池的种类很多,常用电池主要是干电池、蓄电池,以及体积小的微型电池。此外,还有金属-空气电池、燃料电池以及其他能量转换电池如太阳电池、温差电池、核电池等。
干电池
常用的一种是碳-锌干电池(图3)。负极是锌做的圆筒,内有氯化铵作为电解质,少量氯化锌、惰性填料及水调成的糊状电解质,正极是四周裹以掺有二氧化锰的糊状电解质的一根碳棒。电极反应是:负极处锌原子成为锌离子(Zn++),释出电子,正极处铵离子(NH嬃)得到电子而成为氨气与氢气。用二氧化锰驱除氢气以消除极化。电动势约为1.5伏。
蓄电池
种类很多,共同的特点是可以经历多次充电、放电循环,反复使用。
铅蓄电池
最为常用,其极板是用铅合金制成的格栅,电解液为稀硫酸。两极板均覆盖有硫酸铅。但充电后,正极处极板上硫酸铅转变成二氧化铅,负极处硫酸铅转变成金属铅。放电时,则发生反方向的化学反应。
铅蓄电池的电动势约为2伏,常用串联方式组成6伏或12伏的蓄电池组。电池放电时硫酸浓度减小,可用测电解液比重的方法来判断蓄电池是否需要充电或者充电过程是否可以结束。
铅蓄电池的优点是放电时电动势较稳定,缺点是比能量(单位重量所蓄电能)小,对环境腐蚀性强。
由正极板群、负极板群、电解液和容器等组成。充电后的正极板是棕褐色的二氧化铅(PbO2),负极板是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,极板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负极板上留下两个电子(2e-)。由于正负电荷的引力,铅正离子聚集在负极板的周围,而正极板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一种不稳定的物质——氢氧化铅〔Pb(OH4〕)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。由于负极板带负电,因而两极板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正极流向负极。在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负极移动,硫酸根负离子到达负极板后与铅正离子结合成硫酸铅(PbSO4)。在正极板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正极板附近的硫酸根负离子结合成硫酸铅附着在正极上。
随着蓄电池的放电,正负极板都受到硫化,同时电解液中的硫酸逐渐减少,而水分增多,从而导致电解液的比重下降在实际使用中,可以通过测定电解液的比重来确定蓄电池的放电程度。在正常使用情况下,铅蓄电池不宜放电过度,否则将使和活性物质混在一起的细小硫酸铅晶体结成较大的体,这不仅增加了极板的电阻,而且在充电时很难使它再还原,直接影响蓄池的容量和寿命。铅蓄电池充电是放电的逆过程。
铅蓄电池的工作电压平稳、使用温度及使用电流范围宽、能充放电数百个循环、贮存性能好(尤其适于干式荷电贮存)、造价较低,因而应用广泛。采用新型铅合金,可改进铅蓄电池的性能。如用铅钙合金作板栅,能保证铅蓄电池最小的浮充电流、减少添水量和延长其使用寿命;采用铅锂合金铸造正板栅,则可减少自放电和满足密封的需要。此外,开口式铅蓄电池要逐步改为密封式,并发展防酸、防爆式和消氢式铅蓄电池。
铅晶蓄电池
铅晶蓄电池应用的是专有技术,所采用的高导硅酸盐电解质是传统铅酸电池电解质的复杂性改型,无酸雾内化成工艺是定型工艺的革新。这些技术工艺均属国内外首创,该产品在生产、使用及废弃物中都不存在污染问题,更符合环保要求,由于铅晶蓄电池用硅酸盐取代硫酸液作电解质,从而克服了铅酸电池使用寿命短,不能大电流充放电的一系列缺点,更加符合动力电池的必备条件,铅晶电池也必将对动力电池领域产生巨大的推动作用。
铅晶蓄电池较铅酸电池具有无可比拟的优越性:
1、铅晶电池的使用寿命长
一般铅酸电池循环充放电都在350次左右,而铅晶电池在额定容量放电60%的前提下,循环寿命700多次,相当于铅酸电池寿命的一倍。
2、高倍率放电性能好
特殊的工艺使铅晶电池具有高倍率放电的特性,一般铅酸电池放电只有3C,铅晶电池放电最大可以达到10C。
3、深度放电性能好
铅晶电池可深度放电到0V,继续充电可恢复全部额定容量,这一特性相对铅酸电池来讲是难以达到的境界。
4、耐低温性能好
铅晶电池的温度适应范围比较广,从-20—50℃都能适应,特别是在-20℃的情况下,放电能达到87%。对广大低温地区是不可多得的首选佳品。
5、环保性好
铅晶电池所采用的新材料、新工艺和新配方,不存在酸雾等挥发的有害物质,对土地、河流等不会造成污染,更加符合环保要求。
铁镍蓄电池
也叫爱迪生电池。铅蓄电池是一种酸性蓄电池,与之不同,铁镍蓄电池的电解液是碱性的氢氧化钾溶液,是一种碱性蓄电池。其正极为氧化镍,负极为铁。充电、放电的化学反应是
电动势约为1.3~1.4伏。其优点是轻便、寿命长、易保养,缺点是效率不高。
镍镉蓄电池
正极为氢氧化镍,负极为镉,电解液是氢氧化钾溶液,充电、放电的化学反应是
其优点是轻便、抗震、寿命长,常用于小型电子设备。
银锌蓄电池
正极为氧化银,负极为锌,电解液为氢氧化钾溶液。
银锌蓄电池的比能量大,能大电流放电,耐震,用作宇宙航行、人造卫星、火箭等的电源。充、放电次数可达约100~150次循环。其缺点是价格昂贵,使用寿命较短。
燃料电池
一种把燃料在燃烧过程中释放的化学能直接转换成电能的装置。与蓄电池不同之处,是它可以从外部分别向两个电极区域连续地补充燃料和氧化剂而不需要充电。燃料电池由燃料(例如氢、甲烷等)、氧化剂(例如氧和空气等)、电极和电解液等四部分构成。其电极具有催化性能,且是多孔结构的,以保证较大的活性面积。工作时将燃料通入负极,氧化剂通入正极,它们各自在电极的催化下进行电化学反应以获得电能。
燃料电池把燃烧反应所放出的能量直接转变为电能,所以它的能量利用率高,约等于热机效率的2倍以上。此外它还有下述优点:①设备轻巧;②不发噪音,很少污染;③可连续运行;④单位重量输出电能高等。因此,它已在宇宙航行中得到应用,在军用与民用的各个领域中已展现广泛应用的前景。
太阳电池
把太阳光的能量转换为电能的装置。当日光照射时,产生端电压,得到电流,用于人造卫星、宇宙飞船中的太阳电池是半导体制成的(常用硅光电池)。日光照射太阳电池表面时,半导体PN结的两侧形成电位差。其效率在百分之十以上,典型的输出功率是5~10毫瓦每平方厘米(结面积)。
温差电池
两种金属接成闭合电路,并在两接头处保持不同温度时,产生电动势,即温差电动势,这叫做塞贝克效应(见温差电现象),这种装置叫做温差电偶或热电偶。金属温差电偶产生的温差电动势较小,常用来测量温度差。但将温差电偶串联成温差电堆时,也可作为小功率的电源,这叫做温差电池。用半导体材料制成的温差电池,温差电效应较强。
核电池
把核能直接转换成电能的装置(目前的核发电装置是利用核裂变能量使蒸汽受热以推动发电机发电,还不能将核裂变过程中释放的核能直接转换成电能)。通常的核电池包括辐射β射线(高速电子流)的放射性源(例如锶-90),收集这些电子的集电器,以及电子由放射性源到集电器所通过的绝缘体三部分。放射性源一端因失去负电成为正极,集电器一端得到负电成为负极。在放射性源与集电器两端的电极之间形成电位差。这种核电池可产生高电压,但电流很小。它用于人造卫星及探测飞船中,可长期使用。
原电池
经一次放电(连续或间歇)到电池容量耗尽后,不能再有效地用充电方法使其恢复到放电前状态的电池。特点是携带方便、不需维护、可长期(几个月甚至几年)储存或使用。原电池主要有锌锰电池、锌汞电池、锌空气电池、固体电解质电池和锂电池等。锌锰电池又分为干电池和碱性电池两种。
锌锰干电池
制造最早而至今仍大量生产的原电池。有圆柱型和叠层型两种结构。其特点是使用方便、价格低廉、原材料来源丰富、适合大量自动化生产。但放电电压不够平稳,容量受放电率影响较大。适于中小放电率和间歇放电使用。新型锌锰干电池采用高浓度氯化锌电解液、优良的二氧化锰粉和纸板浆层结构,使容量和寿命均提高一倍,并改善了密封性能。
碱性锌锰电池
以碱性电解质代替中性电解质的锌锰电池。有圆柱型和钮扣型两种。这种电池的优点是容量大,电压平稳,能大电流连续放电,可在低温(-40℃)下工作。这种电池可在规定条件下充放电数十次。
锌汞电池
由美国S.罗宾发明,故又名罗宾电池。是最早发明的小型电池。有钮扣型和圆柱型两种。放电电压平稳,可用作要求不太严格的电压标准。缺点是低温性能差(只能在0℃以上使用),并且汞有毒。锌汞电池已逐渐被其他系列的电池代替。
锌空气电池
以空气中的氧为正极活性物质,因此比容量大。有碱性和中性两种系列,结构上又有湿式和干式两种。湿式电池只有碱性一种,用NaOH为电解液,价格低廉,多制成大容量(100安·小时以上)固定型电池供铁路信号用。干式电池则有碱性和中性两种。中性空气干电池原料丰富、价格低廉,但只能在小电流下工作。碱性空气干电池可大电流放电,比能量大,连续放电比间歇放电性能好。所有的空气干电池都受环境湿度影响,使用期短,可靠性差,不能在密封状态下使用。
固体电解质电池
以固体离子导体为电解质,分高温、常温两类。高温的有钠硫电池,可大电流工作。常温的有银碘电池,电压0.6伏,价格昂贵,尚未获得应用。已使用的是锂碘电池,电压2.7伏。这种电池可靠性很高,可用于心脏起搏器。但这种电池放电电流只能达到微安级。
锂电池
以锂为负极的电池。它是60年代以后发展起来的新型高能量电池。按所用电解质不同分为:①高温熔融盐锂电池;②有机电解质锂电池;③无机非水电解质锂电池;④固体电解质锂电池;⑤锂水电池。锂电池的优点是单体电池电压高,比能量大,储存寿命长(可达10年),高低温性能好,可在-40~150℃使用。缺点是价格昂贵,安全性不高。另外电压滞后和安全问题尚待改善。近年来大力发展动力电池和新的正极材料的出现,特别是磷酸亚铁锂材料的发展,对锂电发展有很大帮助。
储备电池
有两种激活方式,一种是将电解液和电极分开存放,使用前将电解液注入电池组而激活,如镁海水电池、储备式铬酸电池和锌银电池等。另一种是用熔融盐电解质,常温时电解质不导电,使用前点燃加热剂将电解质迅速熔化而激活,称为热电池。这种电池可用钙、镁或锂合金为负极,KCl和LiCl的低共熔体为电解质,CaCrO4、PbSO4或V2O5等为正极,以锆粉或铁粉为加热剂。采用全密封结构可长期储存(10年以上)。储备电池适于特殊用途。
标准电池
最著名的是惠斯顿标准电池,分饱和型和非饱和型两种。其标准电动势为1.01864伏(20℃)。非饱和型的电压温度系数约为饱和型的1/4。
糊式锌-锰干电池
由锌筒、电糊层、二氧化锰正极、炭棒、铜帽等组成。最外面的一层是锌筒,它既是电池的负极又兼作容器,在放电过程中它要被逐渐溶解;中央是一根起集流作用的碳棒;紧紧环绕着这根碳棒的是一种由深褐色的或黑色的二氧化锰粉与一种导电材料(石墨或乙炔黑)所构成的混合物,它与碳棒一起构成了电池的正极体,也叫炭包。为避免水分的蒸发,干电池的上部用石蜡或沥青密封。锌-锰干电池工作时的电极反应为锌极:Zn→Zn2++2e
纸板式锌-锰干电池
在糊式锌-锰干电池的基础上改进而成。它以厚度为70~100微米的不含金属杂质的优质牛皮纸为基,用调好的糊状物涂敷其表面,再经过烘干制成纸板,以代替糊式锌-锰干电池中的糊状电解质层。纸板式锌-锰干电池的实际放电容量比普通的糊式锌-锰干电池要高出2~3倍。标有“高性能”字样的干电池绝大部分为纸板式。
碱性锌-锰干电池
其电解质由汞齐化的锌粉、35%的氢氧化钾溶液再加上一些钠羧甲基纤维素经糊化而成。由于氢氧化钾溶液的凝固点较低、内阻小,因此碱性锌-锰干电池能在-20℃温度下工作,并能大电流放电。碱性锌-锰干电池可充放电循环40多次,但充电前不能进行深度放电(保留60%~70%的容量),并需严格控制充电电流和充电期终的电压。
叠层式锌-锰干电池
由几个结构紧凑的扁平形单体电池叠在一起构成。每一个单体电池均由塑料外壳、锌皮、导电膜以及隔膜纸、炭饼(正极)组成。隔膜纸是一种吸有电解液的表面有淀粉层的浆层纸,它贴在锌皮的上面;隔膜纸上面是炭饼。隔膜纸如同糊式干电池的电糊层,起隔离锌皮负极和炭饼正极的作用。叠层式锌-锰干电池减去了圆筒形糊式干电池串联组合的麻烦,其结构紧凑、体积小、体积比容量大,但贮存寿命短且内阻较大,因而放电电流不宜过大。
碱性蓄电池
与同容量的铅蓄电池相比,其体积小,寿命长,能大电流放电,但成本较高。碱性蓄电池按极板活性材料分为铁镍、镉镍、锌银蓄电池等系列。以镉镍蓄电池为例,碱性蓄电池的工作原理是:蓄电池极板的活性物质在充电后,正极板为氢氧化镍〔Ni(OH)3〕,负极板为金属镉(Cd);而放电终止时,正极板转变为氢氧化亚镍〔Ni(OH2)〕,负极板转变为氢氧化镉〔Cd(OH)2〕,电解液多选用氢氧化钾(KOH)溶液。
金属-空气电池
以空气中的氧气作为正极活性物质,金属作为负极活性物质的一种高能电池。使用的金属一般是镁、铝、锌、镉、铁等;电解质为水溶液。其中锌

3. 热敏电阻一般用在哪里

热敏电阻一般用在电表中。

热敏电阻是一种传感器电阻,其电阻值随着温度的变化而改变。按照温度系数不同分为正温度系数热敏电阻(PTC thermistor,即 Positive Temperature Coefficient thermistor)和负温度系数热敏电阻(NTC thermistor,即 Negative Temperature Coefficient thermistor)。

正温度系数热敏电阻器的电阻值随温度的升高而增大,负温度系数热敏电阻器的电阻值随温度的升高而减小,它们同属于半导体器件。

原理:

热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。

4. 热电阻和热电偶如何分辨

热电偶和热电阻的区分方式

1、看标牌

标牌上标的有热偶、热阻等信息。

2、看接线盒接线

热偶一般为两根线,双支的四根线;热阻一般为三根线,双支的六根线。

单支热阻有四根线的,也有少数两根线的。

3、看接线板

在接线板上查看,有正负(补偿导线也有正负)的是热偶,没有正负的是热阻。

4、看内芯

热电偶是2根不同材料的金属丝,尾端焊接在一起;热阻是2根相同材料的导线,尾端连接在一个感温元件上。所以,从外观上看,热电阻的头部有一个直径明显变大的部分,而热电偶就没有。

5、量电阻使用万用表的电阻档测量;正常情况下热电偶的电阻很小,只有几欧;热电阻的电阻体在常温下100多欧。

(4)电路板电偶扩展阅读:

热电偶(thermocouple)是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表、记录仪表及电子调节器配套使用。

当有两种不同的导体或半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为T0 ,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。

这种现象称为“热电效应”,两种导体组成的回路称为“热电偶”,这两种导体称为“热电极”,产生的电动势则称为“热电动势” 。

热电动势由两部分电动势组成,一部分是两种导体的接触电动势,另一部分是单一导体的温差电动势。

热电偶冷端补偿计算方法:

从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度;

从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度。

热电偶的技术优势:热电偶测温范围宽,性能比拟稳定;丈量精度高,热电偶与被测对象直接接触,不受中间介质的影响;热响应时间快,热电偶对温度变化反响灵活;丈量范围 大,热电偶从-40~+ 1600℃ 均可连续测温;热电偶性能牢靠, 机械强度好。运用寿命长,装置便当。

电偶必需是由两种性质不同但契合一定要求的导体(或半导体)材料构成回路。热电偶丈量端和参考端之间必需有温差。

将两种不同资料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因此在回路中构成一个大小的电流,这 种现象称为热电效应。热电偶就是应用这一效应来工作的。

热电阻的测温原理是基于导体或半导体的电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻通常需要把电阻信号通过引线传递到计算机控制装置或者其它二次仪表上。

热电阻的测温原理与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)]

式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为Rt=AeB/t

式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。

5. 芯片上面没有电路布局的部分,三防漆被刮露铜,直接把铜刮伤了,会不会让稳定性变差

随着电子技术的发展,电路板上的器件引脚间距越来越小,器件排列更加密集,电场梯度更大,这都使得电路板对腐蚀更为敏感。另一方面,电路板应用环境的拓展和产品可靠性寿命要求的不断增加,使得电路板发生腐蚀失效的风险不断增加。其中大气环境作为电路板腐蚀发生的外部条件,大气污染物在产品腐蚀发生的过程中扮演了重要角色。由于与大气污染物相关的故障通常在电子产品使用一段时间后才能显现出来,这意味着一旦发生了腐蚀引起的故障,相同环境下相同使用年限的产品将进入故障集中爆发期。同时污染对电子产品的影响是不可逆的,会对维修造成很大困难,甚至导致产品的报废。因此在产品设计之初进行相应的大气污染物的防护设计很有必要。在以往研究中的有关电路板腐蚀问题,主要聚焦于特定类型的腐蚀机理及缓蚀剂的研究。电路板涂覆涂层的研究中,偏向在平面条件下保护涂层的不同材质、不同厚度等因素对防护和可维修性的分析,少有专门针对工程实际中电路板防护涂层的涂覆薄弱点评估和关于电路板腐蚀防护的系统性介绍。
在以往研究的基础上,文中结合电路板大气污染物防护的实际问题,从电路板典型腐蚀失效和保护涂层的涂覆薄弱点入手,探讨电路板类产品应对大气污染物的具体防护措施。
大气污染物分类
根据ANSI/ISA-71.04的描述,影响设备工作的空气中的污染物有固体、液体、气体三种形态。各形态中对电路板影响较大的物质如下所述。
1)固态微粒——灰尘。灰尘中通常含有氯离子、硫酸根、硝酸根等水溶性盐分。除了直接使设备内部金属接插件或金属触点接触不良外,还会在金属表面促使水膜的形成。水溶性成分溶解在水膜中,将会加速金属腐蚀的发生,导致电路板绝缘阻抗下降。若在电路板工作过程中,可能会发生更为严重的电偶腐蚀。
2)液态空气污染物——盐雾。此处描述的液态空气污染物除了广义上的液体外,还包含了被气体携带的液体和空气中雾化液滴状物的气溶胶。沿海地区的空气中,盐雾含量较高,主要成分是NaCl,NaCl在化学上比较不活泼,但在潮湿及有水的情况下,会产生Cl-,与Cu、Ni、Ag等金属或合金反应。同时NaCl作为一种强电解质,在低于临界相对湿度的情况下,可以在附着表面发生结露,离解生成Cl-,溶解在电路板表面的液膜或液滴中。在一定浓度Cl-下,电子设备开始出现局部腐蚀,随着新的不致密腐蚀产物的出现,进一步破坏设备表面的防护层,腐蚀速率迅速增大。
3)气态空气污染物——S02、H2S。含硫化合物是大气中最主要的污染物之一,大气中H2S和SO2主要来自采矿、含硫燃料的燃烧及冶金、硫酸制造等工业过程。H2S和SO2是强可变组分,H2S在加热情况下可分解为H2和S。排放到空气中的SO2与潮湿空气中的O2和水蒸气反应,在粉尘等催化剂作用下化合生成H2SO4。
腐蚀失效机理和形态
由腐蚀引起的电化学迁移(Electrochemical migration,ECM)是电子产品腐蚀失效的主要原因。电化学迁移存在两种不同的形式:一种是金属离子迁移到阴极,还原沉积形成枝晶,并向阳极生长;另外一种是阳极向阴极生产的导电阳极丝(Concting anodic filaments,CAF)。金属的电化学迁移最终会造成电路的短路漏电流,从而造成系统的失效。
电路板出现的大气腐蚀机制中,材料表面的吸附液膜扮演着重要角色。液膜厚度在1μm以上的腐蚀最为严重,液膜之下主要发生的是电化学反应。常见的电子设备在空气中出现的腐蚀形态,可以大致分为以下几类。
1)局部腐蚀。腐蚀集中在金属材料表面的小部分区域内,其余大部分表面腐蚀轻微或不发生腐蚀。主要由于金属表面状态(涂层缺陷、化学成分等)和腐蚀介质分布的不均匀,导致电化学性不均匀,即不同的部位具有不同的电极电位,从而形成电位差,驱动局部腐蚀的产生。在局部腐蚀过程中,阳极区域和阴极区域区别明显,通常形成小阳极大阴极的组态,阳极腐蚀严重。
2)微孔腐蚀。一种特殊的局部腐蚀,常见于镀金元件上的特殊电偶腐蚀。由于镀层表面微孔或其他缺陷的存在,中间过渡层甚至基体金属暴露在大气中,Au与其他金属形成大阴极小阳极的电偶对,发生电化学腐蚀。腐蚀产物的出现进一步导致表面缺陷的增大,最终导致镀层破坏。受接触表面微孔腐蚀产物的影响,腐蚀区域将表现出较高的接触阻抗和相移。
3)电解腐蚀。在相邻导体间距较近且存在偏压的情况下,将形成较强的电场。若此时导体存在液膜,电位较高的导体将会被溶液电解,形成的离子向另一导体迁移,导致导体间绝缘性能迅速下降,破坏导体,最终导致设备失效。
典型腐蚀与防护
电路板典型腐蚀失效
电路板上会用到多种物料,物料的选型对于腐蚀反应的发生有重要影响。以工程实际中遇到的厚膜电阻硫化、SMD LED两种典型硫化失效和印制板铜腐蚀为例,比较不同器件封装结构和材料选择对电路板抗腐蚀能力的影响。
1)厚膜贴片电阻硫化腐蚀。厚膜电阻的面电极含有银元素,银元素暴露在空气中极易与硫发生化学反应。如果外部保护层和电镀层没有紧密结合,则面电极会与空气中的硫接触。当空气中含有大量含硫化合物时,银与硫化物反应生成硫化银,由于硫化银不导电,且体积比银大,在化合后,体积膨胀,导致原先银层的断层,电阻值逐渐增大,直至断路。为了防止厚膜电阻硫化,可选用抗硫化能力强的电阻。在面电极上涂覆保护层,通过导入不含Ag、且具有导电性的硫化保护层,从而保护上面电极,彻底杜绝硫化的通路。典型抗硫化电阻封装结构如图1所示。通过1年的对比应用试验表明,电阻硫化失效率大大降低,新封装结构的厚膜电阻具有良好的抗硫化作用。
图1 带抗硫化涂层的贴片电阻结构
2)硅胶封装LED硫化腐蚀失效。典型的贴片封装LED结构如图2所示,其中与金线相连的一般为镀银支架,灌封材料则通常根据厂商而异。实际应用中,在含硫量较高的地区使用硅胶封装LED,被硫化的风险很高。如图3所示,硅胶封装的LED内部支架已经发黑,经过测试,无法点亮。将失效硅胶封装LED机械开封后,在金相显微镜下观察到内部键合点和支架的形貌如图4和图5所示。支架出现严重发黑,甚至露出基底铜层的颜色,外部键合点已脱落,芯片位置的银胶发黑严重。选取LED支架区域的两个位置进行EDS能谱分析,如图6所示。在支架区域分别检测到了质量分数为13.02%和5.38%的硫元素。
图2 贴片LED结构
图3 被硫化的硅胶封装LED
图4 金相显微镜下的被硫化的硅胶封装LED开封图片
图5 LED支架区域SEM图像
图 6EDS分析结果
硅胶多孔结构对空气中硫化物有吸附作用,PLCC表面灌注型发光二极管如果选用硅胶进行封装,则会有硫化的风险。因为硅胶具有透湿透氧的特性,空气中的硫离子易穿透硅胶分子间隙,进入LED内部,与支架镀银层发生化学反应,导致支架功能区黑化,光通量下降,直至出现死灯。如果选用环氧树脂进行封装(见图7),则能有效阻止硫离子的侵蚀。选用环氧树脂封装的LED,现场使用1年后没有发现硫化的现象。
图7 环氧树脂封装的LED
3)印刷电路板的铜腐蚀。印刷电路板使用铜作为电气传输介质,铜腐蚀不仅会影响产品外观,更容易导致电气连接短路或断路问题。为提高电路板覆铜的抗腐蚀能力,常见的表面处理方式有:热风整平喷锡、化学镍金和化学浸银。相关研究表明,在容易产生凝露的含硫大气环境下,热风整平喷锡抗腐蚀能力最强,其次是化学镍金。
表面处理并不能完全确保电路板在恶劣环境下覆铜不被腐蚀。如图8所示,化学镍金电路板底部接地覆铜区域出现覆铜腐蚀现象,甚至被三防漆覆盖区域的过孔也出现了明显的腐蚀产物堵塞过孔。如图9所示,经过热风整平喷锡的电路板过孔出现腐蚀现象,电路板过孔位置是腐蚀现象出现的高发区域。除了改变表面处理方式和增加镀层厚度外,还应调整电路板生产和集成测试过程中的工艺参数,尤其应避免ICT测试过程中,过高探针压力破坏镀层。ICT测试压痕如图10所示。
图8 化学镍金处理的电路板过孔腐蚀
图9 热风整平喷锡处理的电路板过孔腐蚀
图10 电路板ICT测试压痕
涂层涂覆
印制电路板的器件腐蚀通常从引脚或器件边缘诱发,历经表面涂层损伤、界面腐蚀扩展、金属腐蚀扩展、元器件内腔腐蚀等阶段。三防漆作为一种特殊配方的涂料,用于保护电路板免受环境的侵蚀。三防漆的种类和涂覆厚度是影响防护效果的重要因素。业内常根据GB/T 13452.2-2008测量平面位置的涂覆材料厚度,有湿膜厚度、干膜厚度的区分。IPC-A-610给出了不同类型的三防漆推荐涂覆厚度,见表1。根据实际应用,对于受控环境,可以无需涂覆三防或采用薄层涂覆工艺,涂覆厚度处于范围下限;对于不受控环境或恶劣环境,则建议采用厚层涂覆工艺,涂覆厚度处于范围上限。
表1 IPC-A-610建议涂覆厚度
在实际生产中,发现引脚处干膜厚度有时仅能达到平面区域干膜厚度的1/3。原因是三防漆具有一定流动性,在喷涂后,受到重力和引脚间的毛细作用,器件引脚处的三防漆厚度较薄,成为三防防护的薄弱点(见图11),极易形成腐蚀。如图12所示,使用一段时间的电路板器件引脚处出现了三防漆缺失和引脚腐蚀现象。
图11 保护涂层的薄弱点
图12 器件三防缺失和引脚腐蚀
为了评估不同种类三防漆材质及涂覆厚度在电路板防护效果,选取三块相同电路板,设置不同的涂覆参数,见表2。方案A、B中的丙烯酸三防漆在使用前需要稀释,方案C中的触变型聚氨酯三防漆是改良型的聚氨酯三防漆,具有剪切时黏度较小、便于喷涂均匀、停止剪切时黏度迅速上升的特点。根据GB/T 2423.17进行恒定盐雾试验168h之后,按照GB/T 2423.18采用等级II的要求进行交变盐雾6个周期试验,时间为144h。试验方法和参数见表3和图13。
表2 试验电路板样品涂覆参数
表3 盐雾试验参数
图13盐雾试验方案
试验结果如图14所示。在经过恒定盐雾试验和交变盐雾试验之后,方案A的电路板在涂层的边沿位置出现了涂层脱落,贴片器件和引脚焊点位置出现鼓泡,部分器件引脚出现了较严重腐蚀,在紫光灯下器件引脚位置三防漆脱落情况严重。方案B的电路板在紫光灯下器件引脚位置三防漆出现少量脱落,引脚出现轻微腐蚀,电路板在平面位置出现一些鼓泡,贴片器件的边沿位置出现一定鼓泡。方案C的电路板三防漆外观未见明显破损,在紫光灯下器件引脚位置三防漆留存相对完整,在PCB平面位置有少量鼓泡情况出现,在贴片器件引脚处出现少量气泡。
图14 盐雾试验后的电路板三防漆外观对比
试验结果表明,在三防漆涂覆工艺相同的前提下,不同物性参数和涂覆厚度的三防漆在电路板的防护效果上有较大的差异。适当提高三防漆材质黏度和厚度能有效改善器件引脚处和器件边沿处防护效果,保证涂层的完整性,进一步提高了电路板器件工作过程的抗腐蚀能力。
结构防护
结构密封防护设计是为隔绝或减少外部腐蚀介质的影响,保持内部绝缘件和电子器件原有的性能。例如将设备置于高防护等级的防护外壳中,如图15所示。
图15 IP67电路板防护外壳
提高防护等级可能会导致如散热、人机交互、成本等方面的问题。当系统中引入风扇时,需注意风道设计。根据设备的使用环境,合理选择产品的散热方式和风扇的位置。当风扇置于进风口位置,应注意避免在设备内部形成涡流,且进风口位置避免放置管脚密度较大的器件,以减少局部区域积灰严重的问题出现,避免固体颗粒污染物聚集。
结论
针对电路板的大气污染物防护问题,在应力因素分析和已有腐蚀故障机理研究的基础上,分别从器件级、单板级和设备级,在物料选型、防护涂层和结构防护设计方面提出了多种分析验证方法和防护措施。
1)对于腐蚀器件,可用金相显微、SEM及EDS等手段确定具体污染源,针对污染源种类和入侵路径选择合适封装的器件。
2)受重力和引脚间毛细作用的影响,器件引脚和边缘位置通常是涂层涂覆的薄弱点。带有保护涂层的电路板腐蚀通常从引脚或器件边缘诱发,器件引脚位置为保护涂层的涂覆薄弱点。提高涂层材料黏度和厚度,可以有效提升保护电路板对污染物的抗腐蚀能力。
3)适当提高结构设计的IP防护等级和合理的风道设计,可以有效降低大气污染物入侵。
该研究提出的相关方法和相关案例分析为电路板腐蚀失效分析和防护设计提供了参考和借鉴。
浅谈爬行腐蚀现象
一、问题的提出
1.一批运行了相当一段时间后的用户单板中,发现其中6块单板过孔上发黑而导致工作失常,如图1所示。
图1 电容、电阻端子焊点发黑
2.一批PCBA在运行了一段时间后出现了4块因电阻排焊盘和焊点发暗而导致电路工作不正常,如图2所示。
图2 电阻排焊盘和焊点发暗
不管是失效的电容、电阻还是电阻排,端子接口的位置都检测到大量硫元素的存在。对失效样品上残留的尘埃进行检测也发现S元素含量很高。因此,从现象表现和试验分析的结果看,造成故障的原因是应用环境中的硫浸蚀。
二、爬行腐蚀的机理
爬行腐蚀发生在裸露的Cu面上。Cu面在含硫物质(单质硫、硫化氢、硫酸、有机硫化物等)的作用下会生成大量的硫化物。Cu的氧化物是不溶于水的。但是Cu的硫化物和氯化物却会溶于水,在浓度梯度的驱动下,具有很高的表面流动性。生成物会由高浓度区向低浓度区扩散。硫化物具有半导体性质,且不会造成短路的立即发生,但是随着硫化物浓度的增加,其电阻会逐渐减小并造成短路失效。
此外,该腐蚀产物的电阻值会随着温度的变化而急剧变化,可以从10MΩ下降到1Ω。湿气(水膜)会加速这种爬行腐蚀:硫化物(如硫酸、二氧化硫)溶于水会生成弱酸,弱酸会造成硫化铜的分解,迫使清洁的Cu面露出来,从而继续发生腐蚀。显然湿度的增加会加速这种爬行腐蚀。据有关资料报导,这种腐蚀发生的速度很快,有些单板甚至运行不到一年就会发生失效,如图3、图4所示。
图3 电阻排焊点的爬行腐蚀
图4 PTH过孔上的爬行腐蚀
三、爬行腐蚀的影响因素
1.大气环境因素的影响作为大气环境中促进电子设备腐蚀的元素和气体,被列举的有:SO2、NO2、H2S、O2、HCl、Cl2、NH3等,腐蚀性气体成分的室内浓度、蓄积速度、发生源、影响和容易受影响的材料及容许浓度如表1所示。上述气体一溶入水中,就容易形成腐蚀性的酸或盐。表1
2.湿度根据爬行腐蚀的溶解/扩散/沉积机理,湿度的增加应该会加速硫化腐蚀的发生。
Ping Zhao等人认为,爬行腐蚀的速率与湿度成指数关系。Craig Hillman等人在混合气体实验研究中发现,随着相对湿度的上升,腐蚀速率急剧增加,呈抛物线状。以Cu为例,当湿度从60%RH增加到80%RH时,其腐蚀速率后者为前者的3.6倍。
3.基材和镀层材料的影响
Conrad研究了黄铜、青铜、CuNi三种基材,Au/Pd/SnPb三种镀层结构下的腐蚀速率,实验气氛为干/湿硫化氢。结果发现:基材中黄铜抗爬行腐蚀能力最好,CuNi最差;表面处理中SnPb是最不容易腐蚀的,Au、Pd表面上腐蚀产物爬行距离最长。
Alcatel-Lucent、Dell、Rockwell Automation等公司研究了不同表面处理单板抗爬行腐蚀能力,认为HASL、Im-Sn抗腐蚀能力最好,OSP、ENIG适中,Im-Ag最差。Alcatel-Lucent认为各表面处理抗腐蚀能力排序如下:ImSn~HASL5ENIG>OSP>ImAg化学银本身并不会造成爬行腐蚀。但爬行腐蚀在化学银表面处理中发生的概率却更高,这是因为化学银的PCB露Cu或表面微孔更为严重,露出来的Cu被腐蚀的概率比较高。
4.焊盘定义的影响
Dell的Randy研究认为,当焊盘为阻焊掩膜定义(SMD)时,由于绿油侧蚀存在,PCB露铜会较为严重,因而更容易腐蚀。采用非阻焊掩膜(NSMD)定义方式时,可有效提高焊盘的抗腐蚀能力。
5.单板组装的影响。
① 再流焊接:再流的热冲击会造成绿油局部产生微小剥离,或某些表面处理的破坏(如OSP),使电子产品露铜更严重,爬行腐蚀风险增加。由于无铅再流温度更高,故此问题尤其值得关注。
② 波峰焊接:据报导,在某爬行腐蚀失效的案例中,腐蚀点均发生在夹具波峰焊的阴影区域周围,因此认为助焊剂残留对爬行腐蚀有加速作用。其可能的原因是:●助焊剂残留比较容易吸潮,造成局部相对湿度增加,反应速率加快;●助焊剂中含有大量污染离子,酸性的H+还可以分解铜的氧化物,因此也会对腐蚀有一定的加速作用。四、对爬行腐蚀的防护措施随着全球工业化的发展,大气将进一步恶化,爬行腐蚀将越来越受到电子产品业界的普遍关注。
归纳对爬行腐蚀的防护措施主要有:(1)采用三防涂敷无疑是防止PCBA腐蚀的最有效措施;(2)设计和工艺上要减小PCB、元器件露铜的概率;(3)组装过程要尽力减少热冲击及污染离子残留;(4)整机设计要加强温、湿度的控制;(5)机房选址应避开明显的硫污染。五、爬行腐蚀、离子迁移枝晶及CAF等的异同马里兰大学较早研究了翼型引脚器件上的爬行腐蚀,并对腐蚀机理进行了初步的探讨。与离子迁移枝晶、CAF类似,爬行腐蚀也是一个传质的过程,但三者发生的场景、生成的产物及导致的失效模式并不完全相同,具体对比如表2所示。表2
现代电子装联工艺可靠性

阅读全文

与电路板电偶相关的资料

热点内容
沈阳清洗家电一年挣多少钱 浏览:540
全友家居北欧印象 浏览:584
康师傅邢台厂家电话多少钱 浏览:182
儿童手表不防水怎么办 浏览:631
家具面上有浮毛怎么去除 浏览:894
杭州帝舵手表维修点 浏览:574
新安县阀门维修电话 浏览:949
东芝投影仪天津售后维修 浏览:648
九州家电家具城怎么样 浏览:734
丰炜plc上海维修服务在哪里 浏览:354
家具烤漆怎么擦才能不掉 浏览:35
哈尔滨天王表的售后维修点 浏览:748
上海未墨家具怎么买 浏览:771
品雅居家具 浏览:563
宁波小米官方维修点 浏览:846
梵品家居的家具怎么样 浏览:515
南美黑胡桃实木家具怎么样 浏览:913
怎么写查询维修基金介绍函 浏览:888
楼下漏水楼上如何维修 浏览:86
重卡气囊悬挂维修视频 浏览:163