㈠ 电路分析时相量计算怎么手算啊,就像2∠45
相量有两种表来示形式:1、模自+幅角;2、复数形式。加减法时,采用复数形式计算。如果是“模+幅角”的形式,就转化为复数形式。如你的题目中:2∠45°+1∠30°=2×(cos45°+jsin45°)+1×(cos30°+jsin30°)=√2/2+j√2/2+√3/2+j0.5=(√2/2+√3/2)+j(0.5+√2
㈡ 电路分析时相量计算怎么手算啊,就像2∠45+1∠
相量加减分析要用平行四边形法则,特殊角度好算,非特殊角度可以化成复数后再运算。
相量乘除法运算较简单,乘法:模相乘、角度相加,出发模相处,角度相减。
如果幅角都是特殊角度的话,还能进行纯手工计算;
如:2∠45°+2∠60°=2×(√2/2+j√2/2)+2×(1/2+j√3/2)=√2+j√2+1+j√3=(1+√2)+j(√2+√3)=......
但是如果不是特殊角度,如果非要采用手工计算,恐怕就得使用三角函数表了(也就是中学常用的《学生数学用表》)。否则一般角度的正余弦值是得不出来的,要不然就得使用计算器。
(2)电路分析相量法扩展阅读:
相量仅适用于频率相同的正弦电路.由于频率一定,在描述电路物理量时就可以只需考虑振幅与相位,振幅与相位用一个复数表示,其中复数的模表示有效值,辐角表示初相位.这个复数在电子电工学中称为相量。
两同频率正弦量叠加,表述为:Asin(ωt+α)+Bsin(ωt+β)=(Acosα+Bcosβ)sinωt+(Asinα+Bsinβ)cosωt.易知,叠加后频率没变,相位变化,而且服从相量(复数)运算法则.故相量相加可以描述同频率正弦量的叠加。
相量的的乘除可以表示相位的变化,例如:电感Ι电压超前电流90度,用相量法表示为U=jχI,其中j为单位复数,χ为感抗。
㈢ 电路题,电路分析 ,相量法问题,求问电流表A的读数是多少
解:设I1(相量)=4∠α=4(cosα+jsinα),则并联支路的电压为:
U1(相量)=I1(相量)×(-j4)=4∠α×4∠-90°=16∠(α-90°)。
则:I2(相量)=U1(相量)/(j8-j4)=16∠(α-90°)/4∠90°=4∠(α-180°)=4(-cosα-jsinα)。
KCL:I(相量)=I1(相量)+I2(相量)=0。
即:I=0。电流表A的读数为零。