导航:首页 > 电器电路 > mos管驱动电路详解

mos管驱动电路详解

发布时间:2024-04-29 23:49:08

A. 这个电路图MOS管是怎么驱动的

1. Q5为NMOS管,R12为限流电阻(或是偏置电阻),源漏之间的二极管内为保护二极管。
2. 源极接地容,电压为0,当栅极(即图中右眼驱动1)的电压大于开启电压Vth(一般为0.7V)时,就可在源漏之间形成导电沟道,产生电流。
3. 栅极未加电压(或电压小于Vth)时,管子关闭,电阻很大,12V电压基本全部加在管子上,R12上电压很小,电路电流为几乎为0;栅极电压大于开启电压时,管子导通,电阻迅速变小,R12分得部分电压,电路中产生电流。此电流大小既满足欧姆定律(电阻电流电压方程),也满足萨支唐方程(管子电流电压方程),即上下电流相同,满足电流一致性。
4. 二极管起保护作用。当漏源电压较大时,在管子发生源漏穿通之前,二极管先发生反向击穿,从而保护了管子。
5. 如果二极管为稳压管的话,就是用来恒定漏源电压的,从而通过选择稳压管可以设置电流的大小。此时流过R12的电流等于流过二极管的电流与流过管子的电流之和,满足基尔霍夫电流定律,即流入节点的电流等于流出节点的电流。

B. 如何选择最适合的MOS管驱动电路

1、管种类和结构

MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2、MOS管导通特性

导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3、MOS开关管损失

不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。

MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

4、MOS管驱动

跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。

在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。

上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。而且电压越高,导通速度越快,导通电阻也越小。现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。

MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs。讲述得很详细,所以不打算多写了。

5、MOS管应用电路

MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动。

5种常用开关电源MOSFET驱动电路解析

在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。更细致的,MOSFET还应考虑本身寄生的参数。对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。

当电源IC与MOS管选定之后, 选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。

一个好的MOSFET驱动电路有以下几点要求:

(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。

(2)开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。

(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。

(4)驱动电路结构简单可靠、损耗小。

(5)根据情况施加隔离。

C. MOSFET几种典型驱动电路

MOSFET数字电路
数字科技的进步,如微处理器运算效能不断提升,带给深入研发新一代MOSFET更多的动力,这也使得MOSFET本身的操作速度越来越快,几乎成为各种半导体主动元件中最快的一种。MOSFET在数字信号处理上最主要的成功来自CMOS逻辑电路的发明,这种结构最大的好处是理论上不会有静态的功率损耗,只有在逻辑门(logic gate)的切换动作时才有电流通过。CMOS逻辑门最基本的成员是CMOS反相器(inverter),而所有CMOS逻辑门的基本操作都如同反相器一样,在逻辑转换的瞬间同一时间内必定只有一种晶体管(NMOS或是PMOS)处在导通的状态下,另一种必定是截止状态,这使得从电源端到接地端不会有直接导通的路径,大量节省了电流或功率的消耗,也降低了集成电路的发热量。
MOSFET在数字电路上应用的另外一大优势是对直流(DC)信号而言,MOSFET的栅极端阻抗为无限大(等效于开路),也就是理论上不会有电流从MOSFET的栅极端流向电路里的接地点,而是完全由电压控制栅极的形式。这让MOSFET和他们最主要的竞争对手BJT相较之下更为省电,而且也更易于驱动。在CMOS逻辑电路里,除了负责驱动芯片外负载(off-chip load)的驱动器(driver)外,每一级的逻辑门都只要面对同样是MOSFET的栅极,如此一来较不需考虑逻辑门本身的驱动力。相较之下,BJT的逻辑电路(例如最常见的TTL)就没有这些优势。MOSFET的栅极输入电阻无限大对于电路设计工程师而言亦有其他优点,例如较不需考虑逻辑门输出端的负载效应(loading effect)。

模拟电路
有一段时间,MOSFET并非模拟电路设计工程师的首选,因为模拟电路设计重视的性能参数,如晶体管的转导(transconctance)或是电流的驱动力上,MOSFET不如BJT来得适合模拟电路的需求。但是随著MOSFET技术的不断演进,今日的CMOS技术也已经可以符合很多模拟电路的规格需求。再加上MOSFET因为结构的关系,没有BJT的一些致命缺点,如热破坏(thermal runaway)。另外,MOSFET在线性区的压控电阻特性亦可在集成电路里用来取代传统的多晶硅电阻(poly resistor),或是MOS电容本身可以用来取代常用的多晶硅—绝缘体—多晶硅电容(PIP capacitor),甚至在适当的电路控制下可以表现出电感(inctor)的特性,这些好处都是BJT很难提供的。也就是说,MOSFET除了扮演原本晶体管的角色外,也可以用来作为模拟电路中大量使用的被动元件(passive device)。这样的优点让采用MOSFET实现模拟电路不但可以满足规格上的需求,还可以有效缩小芯片的面积,降低生产成本。
随著半导体制造技术的进步,对于整合更多功能至单一芯片的需求也跟著大幅提升,此时用MOSFET设计模拟电路的另外一个优点也随之浮现。为了减少在印刷电路板(Printed Circuit Board,PCB)上使用的集成电路数量、减少封装成本与缩小系统的体积,很多原本独立的类比芯片与数位芯片被整合至同一个芯片内。MOSFET原本在数位集成电路上就有很大的竞争优势,在类比集成电路上也大量采用MOSFET之后,把这两种不同功能的电路整合起来的困难度也显著的下降。另外像是某些混合信号电路(Mixed-signal circuits),如类比/数位转换器(Analog-to-Digital Converter,ADC),也得以利用MOSFET技术设计出效能更好的产品。

D. MOS开关电路

MOS开关电路图电路图如下:

AOD448是30V75A的管子,是用4.5V驱动的,偏高了点。

可以用,AO3416等管子,电压用2.5V就能驱动。当电压为2.5V时,只有26豪欧。电流2到3安没问题。

也可以用IRF540N,1A条件下一点问题都没有,当时做精密恒流源,可以控制到精度1mA。不过散热很重要,要有足够大的散热片和小风扇。电压有个3-5V就足够了。高电平驱动(其实就相当于PWM)。

(4)mos管驱动电路详解扩展阅读:

MOS管开关电路:

1、P沟道MOS管开关电路

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。需要注意的是,Vgs指的是栅极G与源极S的电压,即栅极低于电源一定电压就导通,而非相对于地的电压。但是因为PMOS导通内阻比较大,所以只适用低功率的情况。大功率仍然使用N沟道MOS管。

2、N沟道mos管开关电路

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压大于参数手册中给定的Vgs就可以了,漏极D接电源,源极S接地。需要注意的是Vgs指的是栅极G与源极S的压差,所以当NMOS作为高端驱动时候,当漏极D与源极S导通时,漏极D与源极S电势相等,那么栅极G必须高于源极S与漏极D电压,漏极D与源极S才能继续导通。

E. 求一个单片机控制mos管的电路图

电路原理图:

单片机驱动mos管电路主要根据MOS管要驱动什么东西, 要只是一个继电器之类的小负载的话直接用51的引脚驱动就可以,要注意电感类负载要加保护二极管和吸收缓冲,最好用N沟道的MOS。

如果驱动的东西(功率)很大,(大电流、大电压的场合),最好要做电气隔离、过流超压保护、温度保护等~~ 此时既要隔离传送控制信号(例如PWM信号),也要给驱动级(MOS管的推动电路)传送电能。

常用的信号传送有PC923 PC929 6N137 TL521等 至于电能的传送可以用DC-DC模块。如果是做产品的话建议自己搞一个建议的DC-DC,这样可以降低成本。

(5)mos管驱动电路详解扩展阅读:

MOS管应用

1、低压应用

当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V左右的压降,导致实际最终加在gate上的电压只有4.3V。这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。同样的问题也发生在使用3V或者其他低压电源的场合。

2、宽电压应用

输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。

为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。

F. 怎样理解这个MOS管驱动电路

因为这个场效应管是作为开关管使用,那么让G极电位比S极低4V一下即可;

Ugs = Ug - Us =-UR3,

关于三极管有 3.3(版V)= Ube + Ue ==> Ue = 3.3-0.7=2.6(V);

则 Ie = Ue/Re = 2.6/20 = 0.13(mA);

所以权电阻R3的电压 UR3= Ie*R3 = 0.13*100=13(V);

G. MOS管在开关电路中的使用

MOS管也就是常说的场效应管(FET),有结型场效应管、绝缘栅型场效应管(又分为增强型和耗尽型场扰指差效应管)。

也可以只分成两类P沟道和N沟道,这里我们就按照P沟道和N沟道分类。

对MOS管分类不了解的可以自己上网查一下。

场效应管的作用主要有信号的转换、控制电路的通断,这里我们讲解的是MOS管作为开关管的使用。

对于MOS管的选型缓皮,注意4个参数:漏源电压(D、S两端承受的电压)、工作电流(经过MOS管的电路)、开启电压(让MOS管导通的G、S电压)、工作频率(最大的开关频率)。

下面我们看一下MOS管的引脚,如下图所示:

有三个引脚,分别为G(栅极)、S(源极)、D(漏极)。

在开关电路中,D和S相当于需要接通的电路两端,G为开关控制。

这里分享一个自己的分辨P沟道和N沟道的方法,我们就看中间的箭头,把G(栅极)连接的部分当做沟道,大家都知道PN结,而不是NP结,那么就是P指向N的,所以脑海里想到这样的情景 P-->N,所以箭头都是P-->N的,那么中间的箭头指向的就是N,如果指向沟道那就是N沟道,如果指向的是S(没有指向沟道),那就是P沟道。

这个方法也适用于三极管的判别(NPN、PNP)。

在上图中我们可以看到右边都有一个寄生二极管,起到保护的作用。

那么根据二极管的单向导电性我们也能知道在电路连接中,D和S应该如何连接。使用有寄生二极管的N沟道MOS管的情况下,D的电压要高于S的电压,否则MOS管无法正常工作(二极管导通)。

使用有寄生二极管的P沟道MOS管,S的电压要高于D的电压,原因同上。

下面是MOS管的导通条件,只要记住电压方向与中间箭头方向相反即为导通(当然这个相反电压需要达到MOS管的开启电压)。

比如导通电压为3V的N沟道MOS管,只要G的电压比S的电压高3V即可导通(D的电压也要比S的高)。

同理,导通电压为3V的P沟道MOS管,只要G的电压比S的电压低3V即可导通(S的电压比D的高)。

在电路中的典型逗桐应用如下图所示,分别为N沟道与P沟道的MOS管驱动电路:

我们可以看到,N沟道的MOS管的电路中,BEEP引脚为高电平即可导通,蜂鸣器发出声音,低电平关闭蜂鸣器;

P沟道的MOS管是用来控制GPS模块的电源通断,GPS_PWR引脚为低电平时导通,GPS模块正常供电,高电平时GPS模块断电。

重点、重点、重点,以上两个应用电路中,N沟道和P沟道MOS管不能互相替代,如下两个应用电路不能正常工作:

对于上面两个电路如何修改能正常工作?

阅读全文

与mos管驱动电路详解相关的资料

热点内容
济南汉诺威热水器售后电话 浏览:532
绵阳本田4s店电话售后 浏览:909
海宁家具公司有哪些 浏览:566
苏州华为的售后维修点 浏览:181
淄博iphone售后维修点 浏览:767
盘锦电器维修工电话 浏览:265
延时灭灯电路 浏览:60
原野科技坐便售后服务 浏览:909
外星人手机如何辨别翻新机 浏览:461
家具步骤白胚然后到什么 浏览:268
维修费表格模板 浏览:724
临汾盛欣家具厂地址在哪里 浏览:260
小米售后服务店 浏览:963
哪里有维修油墨三辊机 浏览:102
大黑豹防水是什么品种 浏览:339
家电出口美国需要什么认证 浏览:259
星级以下酒店家具配套多少钱 浏览:261
玉林万和燃气售后电话号码 浏览:805
免砸砖防水注入什么胶 浏览:724
深圳大中华红木家具展 浏览:854