导航:首页 > 电器电路 > 光谱仪电路

光谱仪电路

发布时间:2021-02-02 01:31:10

㈠ 拉曼光谱仪测试原理图

拉曼光谱(Raman spectra) ,是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。最常用的红外及拉曼光谱区域波长是2.5~25μm。(中红外区)

介绍

拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

分子能级与分子光谱

分子运动包括整体的平动、转动、振动及电子的运动。分子总能量可近似看成是这些运动的能量之和,分别代表分子的平动能、电子运动能、振动能和转动能。除平动能外,其余三项都是量子化的,统称分子内部运动能。分子光谱产生于分子内部运动状态的改变。分子有不同的电子能级,每个电子能级又有不同的振动能级。而每个振动能级又有不同的转动能级。

一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分子吸收光谱。引起分子电子能级跃迁的光谱称电子吸收光谱,其波长位于紫外~可见光区,故称紫外-可见光谱。电子能级跃迁的同时伴有振动能级和转动能级的跃迁。引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。红外吸收和拉曼散射光谱是分子的振动-振动光谱。用远红外光波照射分子时,只会引起分子中转动能级的跃迁,得到纯振动光谱。
http://www.sscins.com/content/?163.html

㈡ 光谱仪的原理

根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和内新型光谱仪.经典容光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光.
根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪.光学多道分析仪OMA (Optical Multi-channel Analyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理, 存储诸功能于一体.由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率;使用OMA分析光谱,测量准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,特别适应于对微弱信号,瞬变信号的检测.

㈢ 色谱仪和光谱仪的作用分别是什么是什么原理区别是什么请简单讲。

简而言之,光抄谱是光信号的读取设备;可反应物质分子或原子级别的特征。色谱是一种分离技术,把混合物分离后再通过光、电等其他检测手段进行检测。
举个例子:一般的液相色谱仪包括色谱柱和紫外检测器,在这里紫外检测器就是光谱仪,分离部分就是色谱分离部分。

㈣ 直读光谱仪的原理是什么

首先我们先看下直读光谱仪基本原理:金属试样与电极之间进行电弧。回由于被测分析试样答激发后产生的光通过聚光透镜由入口狭缝进入,导向凹面衍射光栅上,只读取在凹面光栅上分光的光中所需的光谱线,使用仪器上的光电倍增管或CCD将光转化成电流。由此产生的光谱进行光电测定,进行需测元素的定量方法。

由此看出, 直读光谱仪被测样在规定条件内可一次性快速检测出欲知的所有元素百分比含量,而且通过可靠可控的物理方法(光电转换)实行快速、精准之亮点!适用于较宽的波长范围;光电倍增管对信号放大能力强,对强弱不同谱线可用不同的放大倍率,相差可达10000倍,因此它可用同一分析条件对样品中多种含量 范围差别很大的元素同时进行分析;线性范围宽,更可做高含量分析,所以检测范围宽广。

相对于传统分析法而言,直读光谱仪测试方法的优点是快速、准确、高效。该方法可以直接固体进样,不用进行化学消解,可以减少消解过程以及定容过程所带来的人为误差; 智能软件可实行“傻瓜式”的人性化操作,仪器校准、曲线标定、标准化、数据统计、材质分类等功能强大

㈤ 红外光谱仪的工作原理是什么

下面是网络抄原有的答案,希望对你有所帮助:
红外光谱仪一般分为两类,一种是光栅扫描的,目前很少使用了;另一种是迈克尔逊干涉仪扫描的,称为傅立叶变换红外光谱,这是目前最广泛使用的.
光栅扫描的是利用分光镜将检测光(红外光)分成两束,一束作为参考光,一束作为探测光照射样品,再利用光栅和单色仪将红外光的波长分开,扫描并检测逐个波长的强度,最后整合成一张谱图.
傅立叶变换红外光谱是利用迈克尔逊干涉仪将检测光(红外光)分成两束,在动镜和定镜上反射回分束器上,这两束光是宽带的相干光,会发生干涉.相干的红外光照射到样品上,经检测器采集,获得含有样品信息的红外干涉图数据,经过计算机对数据进行傅立叶变换后,得到样品的红外光谱图.
傅立叶变换红外光谱具有扫描速率快,分辨率高,稳定的可重复性等特点,目前被广泛使用

㈥ 荧光光谱仪原理

荧光分析法的基本原理

处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。

二、荧光分光光度计的特点

用荧光分析法分析的仪器,称荧光分光光度计。
荧光分析法具有灵敏度高(比紫外、可见分光光度法高2~3个数量级),能提供激发光谱、发射光谱、发射强度、特征峰值等信息,在生物、环保、医学、药物、石油勘探等诸多领域都有广泛的应用。本仪器不仅能直接、间接地分析众多的有机化合物;另外,还可利用有机试剂间的反应,进行近70种无机元素的荧光分析。荧光的光谱特征是荧光光谱总是滞后于激发光谱即斯托克斯位移.

三、荧光强度与物质浓度的关系

1.对于某种荧光物质的稀溶液,在一定强度的激发光照射下,荧光物质的发射强度与入射光的强度以及检测器的放大倍数成正比,
由光源发出的光经滤光片后成为单色光,样品在此单色光的照射下,产生荧光,荧光由大孔径非球面镜的聚光及光栅的分光后,照射于光电倍增管上,光电倍增管把光信号转换为电信号,经放大处理,最后由计算机输出显示或进行图谱打印

㈦ 想了解下高利通光纤光谱仪的工作原理

利用紫外-可见吸收光谱来进行定量分析由来已久,可追溯到古代,公元60年古希腊已经知道利用五味子浸液来估计醋中铁的含量,这一古老的方法由于最初是运用人眼来进行检测,所以又称比色法。到了16、17世纪,相关分析理论开始蓬勃发展,1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的朗伯-比尔定律。
高利通科技(深圳)有限公司生产的紫外光纤光谱仪 GLA 639 光纤光谱仪采用 Czerny-Turner 光学结构、用光栅作为分光元件、用 CCD 作为光电探测器、光信号由 SMA905 光纤接头导入。GLA 639 具有宽光谱范围、光谱分辨率高和较大的动态范围等特点。采用 USB mini-B 接口与电脑相连,使得该光谱仪可由电脑直接控制和供电,并且体积小外观漂亮。

本公司为紫外光纤光谱仪 GLA 639 光纤光谱仪开发的软件操作简易,具有自动配置光谱仪、自动读取光谱仪校准系数、光谱采集与测量、日志和颜色条显示的功能。

软件界面直观地显示波长与强度的光谱曲线,可以放大观察光谱更细微峰值大小,同时可以切换显示 Pixel - Intensity 的光谱曲线。

光谱的测量功能包括辐射测量、透过率测量、吸收率测量和反射率测量等。

此外,该软件输出两种数据格式:一种常规的 Excel 双列格式和一种方阵格式; 可以手动保存 Excel 双列格式,方阵格式用于方便地观察有关光谱数据。当在光谱曲线上选择某一区域,该软件显示游标和两个区域边界线。游标用来选择查找波长,移动两个区域边界线用来测量光谱宽度。

同时,用不同的颜色将该选择区域在方阵格式数据中标志出来,包括游标和两个区域边界线相应的光谱值;这一独特的功能可以帮助使用者在大量的光谱数据中方便地查找数据。该软件的日志支持用户记录实验内容,如所分析材料、操作者和时间等。该软件的颜色条帮助用户很容易地理解光谱所对应的颜色。

㈧ 光谱仪分光原理(大学物理光学)

光谱仪分光原理
光谱仪 光谱仪 spectrometer 将复色光分离成光谱的光学仪器。光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。单色仪是通过狭缝只输出单色谱线的光谱仪器,常与其他分析仪器配合使用。 图中所示是三棱镜摄谱仪的基本结构。狭缝S与棱镜的主截面垂直,放置在透镜L的物方焦面内,感光片放置在透镜L的像方焦面内。用光源照明狭缝S, S的像成在感光片上成为光谱线,由于棱镜的色散作用,不同波长的谱线彼此分开,就得入射光的光谱。棱镜摄谱仪能观察的光谱范围决定于棱镜等光学元件对光谱的吸收。普通光学玻璃只适用于可见光波段,用石英可扩展到紫外区,在红外区一般使用氯化钠、溴化钾和氟化钙等晶体。目前普遍使用的反射式光栅光谱仪有较宽的光谱范围。 表征光谱仪基本特性的参量有光谱范围、色散率和分辨本领等。基于干涉原理设计的光谱仪(如法布里-珀罗干涉仪)具有很高的色散率和分辨本领,常用于光谱精细结构的分析。 http://ke..com/view/69332.htm 光栅 光栅:光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的幻变效果。 光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。 立体效果 根据研究,我们人类的眼睛在观察一个三维物体时,由于两眼水平分开在两个不同的位置上,所观察到的物体图像是不同的,它们之间存在着一个像差,由于这个像差的存在,通过人类的大脑,我们可以感到一个三维世界的深度立体变化,这就是所谓的立体视觉原理。 据立体视觉原理,如果我们能够样我们的左右眼分别看到两幅在不同位置拍摄的图像,我们应该可以从这两幅图像感受到一个立体的三维空间。从前面的分析中我们可以知道不同的观察角度将可以看到不同的图像。因如果我们将光栅垂直於两眼放置,由于两眼对光栅的观察角度不同,因而两眼会看到两个不同的图像,从而产生立体感。 常为了获得更好的立体效果我不单单以两幅图像制作,而是用一组序列的立体图像去构成,在这样的情况下,根据观察的位置不同,只要同时看到这个序列中的两副图像,即可感受到三维立体效果。 动画\幻变\变画 将光栅平置于两眼之间,注意两眼对光栅的线纹角度要保持平行,因而两眼看到的是同一个图像,如果图像是由一列连续动画所构成,那么当双眼上下移动或把光栅上下翻动时,双眼与光栅的角度将发生变化,我们也将看到一个接一个的连续图像,即看到一个动画或变画的效果。 光栅原理明说明 光栅也称衍射光栅。是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱.光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果。 一、何谓光栅板 就是指有一面被挤压成圆柱形线条 一面为完整平面的塑胶材料,且圆柱形线条间距相等谓之「 光栅 」 此光栅平面可作为印刷之用途,使用光栅视觉软体合成图档后,使用不同输出设备输出档案,并与光栅贴合或直接印刷在光栅板上,就可以呈现如右图所示的效果,让动画可以直接在平面的印刷上呈现出萤幕所看见的变图效果。 二、 窄角度光栅与宽角度光栅 在选择适合的光栅板时,光栅弯曲的角度是非常重要的事,一般来说 3 D 立体效果最理想的光栅是使用窄角度光栅板,它的视角大约在15度 ~ 44度之间的效果是最好的,如果要制作变图或动画的效果,宽角度光栅板的视角约44度~ 65度之间是最适合的光栅板。 三、 市面常用之光栅种类与用途 在制作各种光栅视觉效果前,必须要先了解光栅的特性、种类、规格、厚度、尺寸、方向性等,才能仔细判别如何制作出精致的光栅影像效果,就台湾市面上常用之光栅材料做分类,可分为以下几种。 印刷光栅材质:PET、PP、PVC、TPU等,PET、PP为硬质平板环保材质,PVC、TPU为软质材质。 印刷光栅线数:50 LPI、60 LPI、62 LPI、75 LPI、100 LPI。 光栅线数效果:50 LPI------------3D、Flip------------常用材料 60 LPI------------3D、Flip、Zoom、Twist、Animation 62 LPI------------3D、Flip、Zoom、Twist、Animation 75 LPI------------3D、Flip、Zoom、Twist、Animation------------常用材料 100 LPI-----------3D、Flip------------常用材料 光栅 设计图折射原理 利用光栅视觉软体把不同的图案转化成光栅线数,利用光栅折射的原理,在不同的角度呈现出不同的图案,如右图所示,不同规格的光栅会有不同的折射效果与折射角度,观赏距离也会有所不同,所以在设计光栅效果图档的时候,必须先了解光栅才能设计出符合光栅特性的设计图。 光栅视觉效果图的种类 光栅效果可以分为以下几种:立体〔3D〕、两变〔Flip〕、变大变小〔Zoom〕、爆炸〔Explore〕、连续动作〔Animation〕、扭转〔Twist〕....等,其实可以更简化分类为:立体〔3D〕、变图〔Flip〕,在变图中就涵盖所有变化的效果,这些效果可以透过许多市面上的动画软体、绘图软体、网页多媒体软体,产生所需要的分解图档,经由光栅视觉软体将分解图合成为光栅线数即可将平面的效果做成立体〔3D〕、变图〔Flip〕的特殊效果。 3D Effect 〔立体影像〕 注意事项: 1、图层必须独立且影像完整。 2、图档解析度300dpi。 3、档案格式必须为PSD档。〔CMYK、RGB〕皆可。 4、背景图层必须出血至少1CM。 http://ke..com/view/51688.htm

㈨ 光谱仪的工作原理是什么

光谱仪的工作原理
元素的原子在激发光源的作用下发射谱线,谱线经光栅分光专后形成光谱,每种属元素都有自己的特征谱线,谱线的强度可以代表试样中元素的含量,高利通光谱仪用光电检测器将谱线的辐射能转换成电能。检测输出的信号,经加工处理,在读出装置上显示出来。然后根据相应的标准物质制作的分析曲线,得出分析试样中待测元素的含量。
光谱仪是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线

㈩ 光谱仪原理

根据色散元件的原理,光谱仪可分为棱镜光谱仪、衍射光栅光谱仪和干涉光谱专仪。光学多通道分析仪属(oma)是近几十年来发展起来的一种新型的具有光子探测器(ccd)和计算机控制的光谱分析仪。它集信息采集、处理和存储功能于一体。

oma不再使用感光乳胶,避免和消除了暗室处理和后期一系列繁琐的处理,测量工作从根本上改变了传统的光谱技术,大大改善了工作条件,提高了工作效率。

利用oma进行光谱分析,测量准确、快速、方便、灵敏、响应时间快、光谱分辨率高。测量结果可从显示屏上读出或由打印机和绘图仪立即输出。它已广泛应用于几乎所有的光谱测量、分析和研究工作,特别是在微弱和瞬态信号的检测中。

(10)光谱仪电路扩展阅读

一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分:

1、入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。

2、准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。

3、色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。

阅读全文

与光谱仪电路相关的资料

热点内容
thinkpad售后维修电话 浏览:850
s20送保修 浏览:317
西映家具是哪里的 浏览:373
惠普售后维修可以换电池 浏览:103
二手家具哪个平台好卖 浏览:306
隆尧家电维修 浏览:124
格力预约维修电话号码是多少 浏览:444
哪里有集装箱ktv厂家电话 浏览:397
珠海阳台防水怎么做 浏览:33
成都市锦江区前锋热水器维修售后 浏览:860
天猫买的switch有保修吗 浏览:420
电子电路维修入门视频 浏览:525
防水201d布料是什么意思 浏览:18
简单的纸盒变家具图片 浏览:40
温州做小家电的控制板有哪些厂 浏览:203
发动机涉水维修费贵吗 浏览:171
农村家用电器专卖店 浏览:5
雅典5年保修 浏览:56
廊坊哪里买家具合适 浏览:833
吊顶防水又隔热什么材料好 浏览:239